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Abstract

Annotated corpora play a significant role in
many NLP applications. However, annota-
tion by humans is time-consuming and costly.
In this paper, a high recall predictor based
on a cost-sensitive learner is proposed as a
method to semi-automate the annotation of
unbalanced classes. We demonstrate the ef-
fectiveness of our approach in the context of
one form of unbalanced task: annotation of
transcribed human-human dialogues for pres-
ence/absence of uncertainty. In two data
sets, our cost-matrix based method of uncer-
tainty annotation achieved high levels of re-
call while maintaining acceptable levels of ac-
curacy. The method is able to reduce human
annotation effort by about 80% without a sig-
nificant loss in data quality, as demonstrated
by an extrinsic evaluation showing that results
originally achieved using manually-obtained
uncertainty annotations can be replicated us-
ing semi-automatically obtained uncertainty
annotations.

1 Introduction

Annotated corpora are crucial for the development

of statistical-based NLP tools. However, the annota-

tion of corpora is most commonly done by humans,

which is time-consuming and costly. To obtain a

higher quality annotated corpus, it is necessary to

spend more time and money on data annotation. For

this reason, one often has to accept some tradeoff

between data quality and human effort.

A significant proportion of corpora are unbal-

anced, where the distribution of class categories are

heavily skewed towards one or a few categories. Un-

balanced corpora are common in a number of dif-

ferent tasks, such as emotion detection (Ang et

al., 2002; Alm et al., 2005), sentiment classifica-

tion (Li et al., 2012), polarity of opinion (Carvalho

et al., 2011), uncertainty and correctness of student

answers in tutoring dialogue systems (Forbes-Riley

and Litman, 2011; Dzikovska et al., 2012), text

classification (Forman, 2003), information extrac-

tion (Hoffmann et al., 2011), and so on1.

In this paper, we present a semi-automated anno-

tation method that can reduce annotation effort for

the class of binary unbalanced corpora. Here is our

proposed annotation scheme: the first step is to build

a high-recall classifier with some initial annotated

data with an acceptable accuracy via a cost-sensitive

approach. The second step is to apply this classifier

to the rest of the unlabeled data, where the data are

then classified with positive or negative labels. The

last step is to manually check every positive label

and correct it if it is wrong.

To apply this method to work in practice, two re-

search questions have to be addressed. The first one

is how to get a high-recall classifier. High recall

means only a low proportion of true positives are

misclassified (false negatives). This property allows

for only positive labels to be corrected by human an-

notators in the third step, so that annotation effort

may be reduced. A related and separate research

question concerns the overall quality of data when

false negatives are not corrected: will a dataset anno-

tated with this method produce the same results as a

1The unbalanced degrees - proportion of minority class cat-

egory, of these corpora range from 3% to 24%.



fully manually annotated version of the same dataset

when analyzed for substantive research questions?

In this paper, we will answer the two research

questions in the context of one form of binary un-

balanced task2: annotation of transcribed human-

human dialogue for presence/absence of uncertainty.

The contribution of this paper is twofold. First,

an extrinsic evaluation demonstrates the utility of

our approach, by showing that results originally

achieved using manually-obtained uncertainty anno-

tations can be replicated using semi-automatically

obtained uncertainty annotations. Second, a high

recall predictor based on a cost-sensitive learner is

proposed as a method to semi-automate the annota-

tion of unbalanced classes such as uncertainty.

2 Related Work

2.1 Reducing Annotation Effort

A number of semi-supervised learning methods have

been proposed in the literature for reducing annota-

tion effort, such as active learning (Cohn et al., 1994;

Zhu and Hovy, 2007; Zhu et al., 2010), co-training

(Blum and Mitchell, 1998) and self-training (Mihal-

cea, 2004). Active learning reduces annotation by

carefully selecting more useful samples. Co-training

relies on several conditional independent classifiers

to tag new unlabeled data and self-training takes

the advantage of full unlabeled data. These semi-

supervised learning methods demonstrate that with

a small proportion of annotated data, a classifier can

achieve comparable performance with all annotated

data. However, these approaches still need consid-

erable annotation effort when a large corpus has to

be annotated. In that case, all predicted labels have

to be rechecked by humans manually. In addition,

none of them take advantage of unbalanced data.

Another class of effort reduction techniques is

pre-annotation, which uses supervised machine-

learning systems to automatically assign labels to

the whole data and subsequently lets human anno-

tators correct them (Brants and Plaehn, 2000; Chiou

et al., 2001; Xue et al., 2002; Ganchev et al., 2007;

Chou et al., 2006; Rehbein et al., 2012).

Generally speaking, our annotation method be-

longs to the class of pre-annotation methods. How-

2This annotation scheme can also benefit other kinds of

tasks.

ever, our method improves pre-annotation for unbal-

anced data in two ways. Firstly, we lower the thresh-

old for achieving a high recall classifier. Secondly,

with pre-annotation, although people only perform

a binary decision of whether the automatic classifier

is either right or wrong, they have to go through all

the unlabeled data one by one. In contrast, in our

scheme, people go through only the positive predic-

tions, which are much less than the whole unlabeled

data, due to the unbalanced structure of the data.

What’s more, reducing the annotation effort is the

goal of this paper but not building a high recall clas-

sifier such as Prabhakaran et al. (2012) and Ambati

et al. (2010).

The approach proposed by Tetreault and

Chodorow (2008) is similar to us. However, they

assumed they had a high recall classifier but did not

explicitly show how to build it. In addition, they

did not provide extrinsic evaluation to see whether a

corpus generated by pre-annotation is good enough

to be used in real applications.

2.2 Uncertainty Prediction

Uncertainty is a lack of knowledge about internal

state (Pon-Barry and Shieber, 2011). In this paper,

we only focus on detection of uncertainty on text.

Commonly used features are lexical features such as

unigram (Forbes-Riley and Litman, 2011). More-

over, energy, dialogue features such as turn number,

tutor goal, and metadata like gender are also con-

sidered by Forbes-Riley and Litman (2011). Un-

certainty prediction is both substantively interesting

(Chan et al., 2012; Forbes-Riley and Litman, 2009)

and pragmatically expeditious for our purposes, due

to its binary classification and typical unbalanced

class structure.

CoNLL 2010 has launched a shared task to de-

tect hedges and their scope in natural language text

on two data sets: BioScope and Wikipedia (CoNLL,

2010). This first task to detect whether there is a

hedge present or not present in a sentence is very

similar to our uncertainty prediction task. 23 teams

participated in the shared task with the best re-

call of 0.8772 on the BioScope, and 0.5528 on the

Wikipedia. As we can see, uncertainty detection is

not trivial and it can be hard to get a high recall clas-

sifier.

In this paper, we focus on lexical features for our



purpose because lexical features are simple to ex-

tract and sufficient for our scheme. Even though

other features may improve uncertainty prediction

performance, with the goal of reducing annotation

effort, such lexical features are shown to be good

enough for our task.

3 The Corpora

We examine the following two data sets: the Mars

Exploration Rover (MER) mission (Tollinger et al.,

2006; Paletz and Schunn, 2011) and the student

engineering team (Eng) dataset (Jang and Schunn,

2012). The MER scientists are evaluating data

downloaded from the Rover, discussing their work

process, and/or making plans for the Rovers. They

come from a large team of about 100+ scien-

tists/faculty, graduate students, and technicians. At

any one time, conversations are between 2-10 peo-

ple. The Eng teams are natural teams of college un-

dergraduates working on their semester-long prod-

uct design projects. The conversations involve 2-6

individuals. Audio and video are available for both

data sets and transcripts are obtained with human an-

notators.

Our task is to annotate the transcribed human-

human dialogues for presence/absence of uncer-

tainty in each utterance. There are 12,331 tran-

scribed utterances in the MER data set, and 44,199

transcribed utterances in the Eng data set. Both data

sets are unbalanced: in the MER data, 1641 of all

the 12,331 (13.3%) utterances are annotated as un-

certain by trained human annotators; in the Eng data,

only 1558 utterances are annotated, 221 of which are

annotated as uncertain (14.2%). 96.5% of the utter-

ances in the Eng data set have not been annotated

yet, raising the need for an efficient annotated tech-

nique. Both data sets are annotated by two trained

coders with high inter-rater agreement, at Cohen’s

kappa of 0.75 (Cohen, 1960). A sample dialogue

snippet from the MER corpus is shown in Table 1.

The last column indicates whether the utterance is

labeled as uncertainty or not: ‘1’ means uncertainty

and ‘0’ means certainty.

The MER data serves as the initial annotated set

and a high recall classifier will be trained on it; the

Eng data 3 serves as a simulated unlabeled data set

3The Eng data in this paper denotes the annotated subset of

speaker utterance uncertainty?

S6 You can’t see the forest through the trees. 0
S1 Yea, we never could see the [missing words] 1
S6 No we had to get above it 0
S4 We just went right through it 0
S6 Yea 0
S1 I still don’t, 0

I’m not quite sure 1

Table 1: Sample dialogue from the MER corpus

to test the performance of our annotation scheme.

4 High Recall Classifier

4.1 Basic Classifier

The uncertainty prediction problem can be viewed

as a binary classification problem. It involves two

steps to build a high recall classifier for unbalanced

data. The first step is to build up a simple classifier;

the second step is to augment this classifier to favor

high recall.

Aiming for a simple classifier with high recall,

only some lexical words/phrases are used as fea-

tures here. There are several resources for the

words/phrases of uncertainty prediction. The main

resource is a guideline book used by our annotators

showing how to distinguish uncertainty utterance. It

gives three different kinds of words/phrases, shown

in Table 2 indicated by three superscripts ‘+’, ‘-’

and ‘*’. The words/phrases with ‘+’ show some

evidence of uncertainty; ones with ‘-’ mean that

they show no evidence of uncertainty; others with

‘*’ may or may not show uncertainty. The second

source is from existing literature. The words/phrases

with ‘1’ are from (Hiraishi et al., 2000) and ones

with ‘2’ are from (Holms, 1999).

For each word/phrase w, a binary feature is used

to indicate whether the word/phrase w is in the ut-

terance or not.

A Naive Bayes classifier is trained on the MER

data using these features and tested on the Eng data.

The performances of the model on the train set and

test set are shown in Table 3. Both weighted and un-

weighted false positive (FP) Rate, Precision, Recall

and F-Measure are reported. However, in later ex-

periments, we will focus on only the positive class

(the uncertainty class). A 0.689 recall means that

510 out of 1641 positive utterances are missed using

this model.

the original Eng corpus.



as far as+ i hope+ somehow+ it will− don’t remember∗ maybe∗ tends to∗ doubtful1

as far as i know+ i think+ something+ it wont− essentially∗ most∗ that can vary∗ good chance1

as far as we know+ i thought+ something like this+ it would− fairly∗ mostly∗ typically∗ improbable1

believe+ i wont+ worried that+ would it be− for the most part∗ normally∗ uh∗ possible1

could+ im not sure+ you cannot tell+ about∗ frequently∗ pretty much∗ um∗ probable1

guess+ may+ can− almost∗ generally∗ quite∗ usually∗ relatively1

guessed+ might+ i am− any nonprecise amount∗ hes∗ should∗ very∗ roughly1

guessing+ not really+ i can− basically∗ hopefully∗ sometimes∗ virtually∗ tossup1

i believe+ not sure+ i will− believed∗ i assumed that∗ somewhat∗ whatever∗ unlikely1

i cant really+ possibly+ i would− cannot remember∗ it sounds as∗ somewhere∗ you know∗ of course2

i feel+ probably+ it can− can’t remember∗ kind of∗ stuff∗ almost certain1 sort of2

i guess+ really+ it is− do not remember∗ likely∗ tend to∗ almost impossible1

Table 2: Words/phrases for uncertainty prediction.

Data Set FP Rate Precision Recall F-Measure Class

MER
.311 .954 .989 .971 0
.011 .908 .689 .784 1
.271 .948 .949 .946 (Weighted)

Eng
.475 .926 .981 .952 0
.019 .817 .525 .639 1
.41 .91 .916 .803 (Weighted)

Table 3: Naive Bayes classifier performance on the MER
(train set) and Eng (test set) with only the words/phrases

assume I didn’t know more or less some kind

couldn’t i don’t even know no idea suppose

don’t know if not clear suspect

don’t think if it or think

don’t understand if we perhaps thought

doubt if you possibility unclear

either imagine potential what i understood

figured kinda presumably wondering

i bet kinds of seem

i can try like some

Table 4: New words/phrases for uncertainty prediction

After error analysis, a few new words/phrases are

added to the feature set, shown in Table 4. By sup-

plementing the original feature set in this way, we

reran the training yielding our final baseline, the

performance on the training data (MER) and test-

ing data (Eng) is shown in Table 5. This time, we

compare different classifiers including Naive Bayes

(NB), Decision Tree (DT) and Support Vector Ma-

chine (SVM). All of them are implemented using the

open source platform Weka (Hall et al., 2009) with

default parameters.

As we can see, test recall is worse than train recall.

Data Set Method TP FP Precision Recall F-Measure

MER
NB .732 .016 .875 .732 .797
DT .831 .013 .908 .831 .868

SVM .811 .013 .905 .811 .855

Eng
NB .679 .014 .888 .679 .769
DT .665 .021 .84 .665 .742

SVM .674 .022 .832 .674 .745

Table 5: Performance with original and new
words/phrases as a feature set: train on the MER
and test on the Eng data for class ‘1’. TP is true positive;
FP is false positive

In addition, although DT and SVM perform better

than NB on train data set, they have similar perfor-

mance on the test set. Thus, the performance of the

baseline is not unacceptable, but neither is it stellar.

In advance, it is not hard to build such a model, since

only simple features and classifiers are used here.

4.2 Augmenting the Classifier using a Cost

Matrix

In our annotation framework, if the classifier

achieves 100% recall, the annotated data will be per-

fect because all the wrong predictions can be cor-

rected. That’s the reason why we are seeking for a

high recall classifier. A confusion matrix, is a com-

mon way to represent classifier performance. High

recall is indexed by a low false negative (FN) rate;

therefore, we aim to minimize FNs to achieve high

recall.

Following this idea, we employ a cost-sensitive

model, where the cost of FN is more than false pos-

itive (FP).

Following the same notation, we represent our

cost-sensitive classifier as a cost matrix. In our cost

matrix, classifying an actual class ‘1’ as ‘1’ costs

Ctp, an actual class ‘0’ as ‘1’ costs Cfp, an actual

class ‘1’ to ‘0’ costs Cfn, and ‘0’ to ‘0’ costs Ctn.

To achieve a high recall, Cfn should be more than

Cfp.

We can easily achieve 100% recall by classifying

all samples to ‘1’, but this would defeat our goal of

reducing human annotation effort, since all utterance

uncertainty predictions would need to be manually

corrected. Thus, at the same time of a high recall,

we should also balance the total ratio of TP and FP.

In our experiment, Ctp and Ctn are set to 0 since

they are perfectly correct. Additionally, Cfp = 1 all

the time and Cfn changes with different scales. FPs



Cfn FP Rate Precision Recall F-Measure (TP + FP )/N
1 .022 .831 .67 .742 .114

2 .024 .825 .683 .748 .117

3 .037 .771 .747 .759 .138

5 .052 .726 .828 .774 .162

10 .071 .674 .887 .766 .187

15 .091 .622 .91 .739 .207

20 .091 .622 .91 .739 .207

Table 6: Test performance with cost matrix

mean wrong predictions, but we can correct them

during the second pass to check them. However, we

cannot correct FNs without going through the whole

data set, so they are a more egregious detriment to

the quality of the annotated data. During the exper-

iment, Cfn varies from 1 to 20. With increases in

Cfn, the cost of FN increases compared to FP.

The cost-sensitive classifier is relying on Weka

with reweighting training instances. In this task,

SVM performed better than NB and DT. Only SVM

results are included here due to space constraint.

The test results are shown in Table 64. The last col-

umn in the two tables is the total proportion of pos-

itive predictions (FP + TP ). This value indicates

the total amount of data that humans have to check

in the second pass to verify whether positive predic-

tions are correct. To reduce human annotation effort,

we would like this value to be as low as possible.

As shown in Table 6, with the increase of Cfn, the

recall increases; however, the proportion of positive

predictions also increases. Therefore, it is a tradeoff

to achieve a high recall and a low ratio of TP and FP.

For the test set, the recall increases with larger

Cfn, even with a small increase of Cfn from 1 to

3. Remarkably, the classifier gives us a high recall

while keeping the proportion of positive predictions

at an acceptably low level. When Cfn = 20 for the

test set, only 20.7% of the data need to be manually

checked by humans, and less than 10% uncertain ut-

terances (19 out of 221 for the Eng data) are missed.

Now, we have achieved a high recall classifier

with an acceptable ratio of positive predictions.

5 Extrinsic Evaluation of Semi-Automated
Annotation

Even with a high recall classifier, some of the true

positive data are labeled incorrectly in the final an-

4Only Cfn = 1, 2, 3, 5, 10, 15, 20 are reported here due to

page limits

notated corpus. In addition, it also changes the dis-

tribution of class labels.

To test whether it hurts the overall data quality,

we performed an analysis, which demonstrates that

this annotation scheme is sufficient to produce qual-

ity data. We attempted to replicate an analysis on the

Eng data set, which examines the use of analogy, a

cognitive strategy where a source and target knowl-

edge structure are compared in terms of structural

correspondences as a strategy for solving problems

under uncertainty. The analysis we attempt to repli-

cate here focuses on examining how uncertainty lev-

els change relative to baseline before, during, and

after the use of analogies.

The overall Eng transcripts were segmented into

one of 5 block types: 1) pre-analogy (Lag -1) blocks,

10 utterances just prior to an analogy episode, 2)

during-analogy (Lag 0) blocks, utterances from the

beginning to end of an analogy episode, 3) post-

analogy (Lag 1) blocks, 10 utterances immediately

following an analogy episode, 4) post-post-analogy

(Lag 2) blocks, 10 utterances immediately follow-

ing post-analogy utterances, and 5) baseline blocks,

each block of 10 utterances at least 25 utterances

away from the other block types. The measure of un-

certainty in each block was the proportion of uncer-

tain utterances. The sampling strategy for the base-

line blocks was designed to provide an estimate of

uncertainty levels when the speakers were engaged

in pre-analogy, during-analogy, or post-analogy con-

versation, with the logic being that a certain amount

of lag or spillover of uncertainty was assumed to

take place surrounding analogy episodes.

Figure 1 shows the relationship of block type to

mean levels of uncertainty, comparing the pattern

with human vs. classifier-supported uncertainty la-

bels. The classifier-generated labels were first pre-

processed such that all FPs were removed, but FNs

remain. This re-analysis comparison thus provides

a test of whether the recall rate is high enough that

known statistical effects are not substantially altered

or removed. To examine how different settings of

Cfn might impact overall performance, we used la-

bels (corrected for false positives) for 4 different lev-

els of Cfn (1, 5, 10, 20) from the Table 6.

In the Eng data analyses, the main findings were

that analogy was triggered by local spikes in un-

certainty levels (Lag -1 > baseline), replicating re-
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Figure 1: Mean % uncertainty by block type and label
source (Eng data set)

Table 7: Standardized mean difference (Cohen’s d) from
baseline by block type and label source (the Eng data set)
(Note: ‘*’ denotes p < .05, ‘**’ denotes p < .01)

Block type

Lag -1 Lag 0 Lag 1 Lag 2

Human 0.54∗ 0.4 0.79∗∗ 0.46∗

Cfn = 20 0.57∗ 0.3 0.78∗∗ 0.44

Cfn = 10 0.58∗∗ 0.32 0.73∗∗ 0.47∗

Cfn = 5 0.57∗ 0.34 0.66∗∗ 0.48∗

Cfn = 1 0.42 0.25 0.54∗ 0.40

sults from prior work with the MER dataset (Chan

et al., 2012); in contrast to the findings in MER,

uncertainty did not reduce to baseline levels follow-

ing analogy (Lags 1 and 2 > baseline). Figure 1

plots the relationship of block type to mean levels

of uncertainty in this data set, comparing the pat-

tern with human vs. classifier-generated uncertainty

labels. Table 7 shows the standardized mean differ-

ence (Cohen’s d) (Cohen, 1988) from baseline by

block type and label source. The pattern of effects

(Lag -1 > baseline, Lags 1 and 2 > baseline) re-

mains substantially unchanged with the exception of

the Lag 2 vs. baseline comparison falling short of

statistical significance (although note that the stan-

dardized mean difference remains very similar) for

Cfn ranging from 20 to 5, although we can observe

a noticeable attenuation of effect sizes from Cfn of

5 and below, and a loss of statistical significance

for the main effect of uncertainty being significantly

higher than baseline for Lag -1 blocks when Cfn =

1.

The re-analysis clearly demonstrates that the re-

call rate of the classifier is sufficient to not substan-

tially alter or miss known statistical effects. We can

reasonably extrapolate that using this classifier for

uncertainty annotation in other datasets should be

satisfactory.

6 Conclusion and Discussion

In this paper, a simple high recall classifier is pro-

posed based on a cost matrix to semi-automate the

annotation of corpora with unbalanced classes. This

classifier maintains a good balance between high re-

call and high FP and NP ratio. In this way, humans

can employ this classifier to annotate new data with

significantly reduced effort (approximately 80% less

effort, depending on the degree of imbalance in the

data). Although the classifier does introduce some

misclassified samples to the final annotation, an ex-

trinsic evaluation demonstrates that the recall rate is

high enough and the performance does not sacrifice

data quality.

Like other semi-supervised or supervised meth-

ods for supporting annotation, our annotation

scheme has some limitations that should be noted.

Firstly, an initial annotated data set is needed to de-

rive a good performance classifier and the amount

of annotated data is dependent on the specific task5.

Secondly, the features and machine learning algo-

rithms used in semi-supervised annotation are also

domain specific. At the same time, there are some

unique challenges and opportunities that can be fur-

ther investigated for our annotation scheme on un-

balanced data. For example, even though the cost

matrix method can achieve a high recall for binary

classification problem, whether it can be generalized

to other tasks (e.g., multi-class classification tasks)

is an unanswered question. Another open question

is how the degree of unbalance between classes in

the corpora affects overall annotation quality. We

suggest that if the data is not unbalanced, the total

amount of effort that can be reduced will be lower.
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