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Design ideas often come from sources of inspiration (e.g., analogous designs,

prior experiences). In this paper, we test the popular but unevenly supported

hypothesis that conceptually distant sources of inspiration provide the best

insights for creative production. Through text analysis of hundreds of design

concepts across a dozen different design challenges on a Web-based innovation

platform that tracks connections to sources of inspiration, we find that citing

sources is associated with greater creativity of ideas, but conceptually closer

rather than farther sources appear more beneficial. This inverse relationship

between conceptual distance and design creativity is robust across different

design problems on the platform. In light of these findings, we revisit theories of

design inspiration and creative cognition.
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W
here do creative design ideas come from? Cognitive scientists have

discovered that people inevitably build new ideas from their prior

knowledge and experiences (Marsh, Ward, & Landau, 1999;

Ward, 1994). While these prior experiences can serve as sources of inspiration

(Eckert & Stacey, 1998) and drive sustained creation of ideas that are both

new and have high potential for impact (Hargadon & Sutton, 1997; Helms,

Vattam, & Goel, 2009), they can also lead designers astray: for instance, de-

signers sometimes incorporate undesirable features from existing solutions

(Jansson & Smith, 1991; Linsey et al., 2010), and prior knowledge can

make it difficult to think of alternative approaches (German & Barrett,

2005; Wiley, 1998). This raises the question: what features of potential inspi-

rational sources can predict their value (and/or potential harmful effects)? In

this paper, we examine how the conceptual distance of sources relates to their

inspirational value.
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1 Background

1.1 Research base
What do we mean by conceptual distance? Consider the problem of e-waste

accumulation: the world generates 20e50 million metric tons of e-waste every

year, yielding environmentally hazardous additions to landfills. A designer

might approach this problem by building on near sources like smaller-scale

electronics reuse/recycle efforts, or by drawing inspiration from a far source

like edible food packaging technology (e.g., to design re-usable electronics

parts). What are the relative benefits of different levels of source conceptual

distance along a continuum from near to far?

Many authors, principally those studying the role of analogy in creative prob-

lem solving, have proposed that conceptually far sources d structurally

similar ideas with many surface (or object) dissimilarities d are the best sour-

ces of inspiration for creative breakthroughs (Gentner & Markman, 1997;

Holyoak & Thagard, 1996; Poze, 1983; Ward, 1998). This proposal d here

called the Conceptual Leap Hypothesis d is consistent with many anecdotal

accounts of creative breakthroughs, from Kekule’s discovery of the structure

of benzene by visual analogy to a snake biting its tail (Findlay, 1965), to

George Mestral’s invention of Velcro by analogy to burdock root seeds

(Freeman & Golden, 1997), to more recent case studies (Enkel &

Gassmann, 2010; Kalogerakis, Lu, & Herstatt, 2010).

However, empirical support for this proposal is mixed. Some studies have

shown an advantage of far over near sources for novelty, quality, and flex-

ibility of ideation (Chan et al., 2011; Chiu & Shu, 2012; Dahl & Moreau,

2002; Gonçalves, Cardoso, & Badke-Schaub, 2013; Hender, Dean, Rodgers,

& Jay, 2002); but, some in vivo studies of creative cognition have not found

strong connections between far sources and creative mental leaps (Chan &

Schunn, 2014; Dunbar, 1997), and other experiments have demonstrated

equivalent benefits of far and near sources (Enkel & Gassmann, 2010;

Malaga, 2000). Relatedly, Tseng, Moss, Cagan, and Kotovsky (2008)

showed that far sources were more impactful after ideation had already

begun (vs. before ideation), providing more functionally distinct ideas

than near or control, but both far and near sources led to similar levels of

novelty. Similarly, Wilson, Rosen, Nelson, and Yen (2010) showed no

advantage of far over near sources for novelty of ideas (although near but

not far sources decreased variety of ideas). Fu et al. (2013) even found

that far sources led to lower novelty and quality of ideas than near sources.

Thus, more empirical work is needed to determine whether the Conceptual

Leap Hypothesis is well supported. Further, Fu et al. (2013) argue there is

an inverted U-shape function in which moderate distance is best, suggesting
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the importance of conceptualizing and measuring distance along a

continuum.

1.2 Impetus for the current work
Key methodological shortcomings in prior work further motivate more and

better empirical work. Prior studies may be too short (typically 30 min to

1 h) to convert far sources into viable concepts. To successfully use far sources,

designers must spend considerable cognitive effort to ignore irrelevant surface

details, attend to potentially insightful structural similarities, and adapt the

source to the target context. Additionally, many far sources may yield shallow

or unusable inferences (e.g., due to non-alignable differences in structural or

surface features; Perkins, 1997); thus, designers might have to sift through

many samples of far sources to find ‘hidden gems.’ These higher processing

costs for far sources might partially explain why some studies show a negative

impact of far sources on the number of ideas generated (Chan et al., 2011;

Hender et al., 2002). In the context of a short task, these processing costs might

take up valuable time and resources that could be used for other important as-

pects of ideation (e.g., iteration, idea selection); in contrast, in real-world

design contexts, designers typically have days, weeks or even months (not an

hour) to consider and process far sources.

A second issue is a lack of statistical power. Most existing experimental

studies have N ! 12 per treatment cell (Chiu & Shu, 2012; Hender et al.,

2002; Malaga, 2000); only four studies had N " 18 (Chan et al., 2011; Fu

et al., 2013; Gonçalves et al., 2013; Tseng et al., 2008), and they are evenly

split in support/opposition for the benefits of far sources. Among the few

correlational studies, only Dahl and Moreau (2002) had a well powered study

design in this regard, with 119 participants and a reasonable range of concep-

tual distance. Enkel and Gassmann (2010) only examined 25 cases, all of

which were cases of cross-industry transfer (thus restricting the range of con-

ceptual distance being considered). This lack of statistical power may have

led to a proliferation of false negatives (potentially exacerbated by small or

potentially zero effects at short time scales), but possibly also severely over-

estimated effect sizes or false positives (Button et al., 2013); more adequately

powered studies are needed for more precise estimates of the effects of con-

ceptual distance.

A final methodological issue is problem variation. Many experimental studies

focused on a single design problem. The inconsistent outcomes in these studies

may be partially due to some design problems having unique characteristics,

e.g., coincidentally having good solutions that overlap with concepts in far

sources. Indeed, Chiu and Shu (2012), who examined multiple design prob-

lems, observed inconsistent effects across problems. Other investigations of

design stimuli have also observed problem variation for effects

(Goldschmidt & Smolkov, 2006; Liikkanen & Perttula, 2008).
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This paper contributes to theories of design inspiration by 1) reporting the re-

sults of a study that addresses these methodological issues to yield clearer ev-

idence, and 2) (to foreshadow our results) re-examining theories of design

inspiration and conceptual distance in light of accumulating preponderance

of evidence against the Conceptual Leap Hypothesis.

2 Methods

2.1 Overview of research context
The current work is conducted in the context of OpenIDEO (www.openideo.-

com), a Web-based crowd-sourced innovation platform that addresses a range

of social and environmental problems (e.g., managing e-waste, increasing

accessibility in elections). The OpenIDEO designers, with expertise in design

processes, guide contributors to the platform through a structured design pro-

cess to produce concepts that are ultimately implemented for real-world

impact (‘Impact Stories,’ n.d.). For this study, we focus on three crucial early

stages in the process: first, in the inspiration phase (lasting between 1.5 and 4

weeks, M ¼ 3.1), contributors post inspirations (e.g., descriptions of solutions

to analogous problems and case studies of stakeholders), which help to define

the problem space and identify promising solution approaches; then, in the

concepting phase (lasting the next 2e6 weeks, m ¼ 3.4), contributors post con-

cepts, i.e., specific solutions to the problem. Figure 1 shows an example

concept; it is representative of the typical length and level of detail in concepts,

i.e., w150 words on average, more detail than one or two words/sentences/

sketches, but less detail than a full-fledged design report/presentation or patent

application. Finally, a subset of these concepts is shortlisted by an expert panel

(composed of the OpenIDEO designers and a set of domain experts/stake-

holders) for further refinement, based on their creative potential. In later

stages, these concepts are refined and evaluated in more detail, and then a sub-

set of them is selected for implementation. We focus on the first three stages

given our focus on creative ideation (the later stages involve many other design

processes, such as prototyping).

The OpenIDEO platform has many desirable properties as a research context

for our work, including the existence of multiple design problems, thousands

of concepts and inspirations, substantive written descriptions of ideas to

enable efficient text-based analyses, and records of feedback received for

each idea, another critical factor in design success. A central property for

our research question is the explicit nature of sources of inspiration in the

OpenIDEO workflow. The site encourages contributors to build on others’

ideas. Importantly, when posting concepts or inspirations, contributors are

prompted to cite any concepts or inspirations that serve as sources of inspira-

tion for their idea. Also, when browsing other concepts/inspirations, they are

able to also see concepts/inspirations the given concept/inspiration ‘built

upon’ (i.e., cited as explicit sources of inspiration; see Figure 2). This culture

4 Design Studies Vol -- No. -- Month 2014

Please cite this article in press as: Chan, J., et al., Do the best design ideas (really) come from conceptually distant sources
of inspiration?, Design Studies (2014), http://dx.doi.org/10.1016/j.destud.2014.08.001

http://www.openideo.com
http://www.openideo.com


Figure 1 Example concept illustrating the typical amount of detail per concept

Figure 2 Depiction of OpenIDEO citation workflow. When posting concepts/inspirations, users are prompted to cite concepts/inspirations they

‘build upon’ by dragging bookmarked concepts/inspirations (middle panel) to the citation area (left panel). Users can also search for related

concepts/inspirations at this step (middle panel). These cited sources then show up as metadata for the concept/inspiration (right panel)
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of citing sources is particularly advantageous, given that people generally

forget to monitor or cite their sources of inspiration (Brown & Murphy,

1989; Marsh, Landau, & Hicks, 1997), and our goal is to study the effects of

source use. While users might still forget to cite sources, these platform fea-

tures help ensure higher rates of source monitoring than other naturalistic

ideation contexts. We note that this operationalization of sources as self-

identified citations precludes consideration of implicit stimulation; however,

the Conceptual Leap Hypothesis may be more applicable to conscious inspi-

ration processes (e.g., analogy, for which conscious processing is arguably

an important defining feature; Schunn & Dunbar, 1996).

2.2 Sample and initial data collection
The full dataset for this study consists of 2341 concepts posted for 12

completed challenges by 1190 unique contributors, citing 4557 unique inspira-

tions; 241 (10%) of these concepts are shortlisted for further refinement. See

Table 2 for a description of the 12 challenges (with some basic metadata on

each challenge). Figure 3 shows the full-text design brief for two challenges.

Figure 3 Full-text of challenge briefs from two OpenIDEO challenges
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With administrator permission, we downloaded all inspirations and concepts

(which exist as individual webpages) and used an HTML parser to extract the

following data and metadata:

1) Concept/inspiration author (who posted the concept/inspiration)

2) Number of comments (before the refinement phase)

3) Shortlist status (yes/no)

4) List of cited sources of inspiration

5) Full-text of concept/inspiration

Not all concepts cited inspirations as sources. Of the 2341 concepts, 707

(posted by 357 authors) cited at least one inspiration, collectively citing 2245

unique inspirations. 110 of these concepts (w16%) were shortlisted (see

Table 1 for a breakdown by challenge). This set of 707 concepts is the primary

sample for this study; the others serve as a contrast to examine the value of

explicit building at all on prior sources, and to aid in interpretation of any

negative or positive effects of variations in distance. Because we only collected

publicly available data, we do not have complete information on the expertise

of all contributors: however, based on their public profiles on OpenIDEO, at

least 1/3 of the authors in this sample are professionals in design-related disci-

plines (e.g., user experience/interaction design, communication design, archi-

tecture, product/industrial design, entrepreneurs and social innovators, etc.)

and/or domain experts or stakeholders (e.g., urban development researcher

Table 1 Descriptions and number of posts for OpenIDEO challenges in final analysis sample

Name/description # of Inspirations # of Concepts
(shortlisted)

How might we increase the number of registered bone marrow
donors to help save more lives?

186 71 (7)

How might we inspire and enable communities to take more
initiative in making their local environments better?

160 44 (11)

How can we manage e-waste & discarded electronics to safeguard
human health & protect our environment?

60 26 (8)

How might we better connect food production and consumption? 266 147 (10)
How can technology help people working to uphold human rights
in the face of unlawful detention?

248 62 (7)

How might we identify and celebrate businesses that innovate for
world benefit and inspire other companies to do the same?

122 24 (13)

How might we use social business to improve health in low-income
communities?

131 46 (11)

How might we increase social impact with OpenIDEO over
the next year?

67 40 (12)

How might we restore vibrancy in cities and regions facing
economic decline?

558 119 (13)

How might we design an accessible election experience for everyone? 241 47 (8)
How might we support web entrepreneurs in launching and growing
sustainable global businesses?

88 49 (7)

How can we equip young people with the skills, information and
opportunities to succeed in the world of work?

118 32 (3)
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contributing to the vibrant-cities challenge, education policy researcher

contributing to the youth-employment challenge, medical professional

contributing to the bone-marrow challenge). Collectively, these authors ac-

counted for approximately half of the 707 concepts in this study.

We analyze the impact of the distance of inspirations (and not cited concepts)

given our focus on ideation processes during ‘original’ or non-routine design,

where designers often start with a problem and only ‘inspirations’ (e.g., infor-

mation about the problem or potentially related designs) rather than routine

design (e.g., configuration or parametric design), where designers might be

modifying or iterating on existing solutions rather than generating novel

ones (Chakrabarti, 2006; Dym, 1994; Gero, 2000; Ullman, 2002). The Concep-

tual Leap Hypothesis maps most clearly to non-routine design.

2.3 Measures

2.3.1 Creativity of concepts
We operationalize concept creativity as whether a concept gets shortlisted.

Shortlisting is done by a panel of expert judges, including the original chal-

lenge sponsors, who have spent significant time searching for and learning

about existing approaches, and the OpenIDEO designers, who are experts in

the general domain of creative design, and who have spent considerable

time upfront with challenge sponsors learning about and defining the problem

space for each challenge.

An expert panel is widely considered a ‘gold standard’ for measuring the crea-

tivity of ideas (Amabile, 1982; Baer & McKool, 2009; Brown, 1989; Sawyer,

2012). Further, we know from conversations with the OpenIDEO team that

the panel’s judgments combines consideration of both novelty and useful-

ness/appropriateness (here operationalized as potential for impact; A. Jablow,

personal communication, May 1, 2014), the standard definition of creativity

(Sawyer, 2012). Since OpenIDEO challenges are novel and unsolved, success-

ful concepts are different from (and, perhaps more importantly, significantly

better than) existing unsatisfactory solutions. We use shortlist (rather than

win status) given our focus on the ideation phase in design (vs. convergence/

refinement, which happens after concepts are shortlisted, and can strongly

influence which shortlisted concepts get selected as ‘winners’ for

implementation).

2.3.2 Conceptual distance

2.3.2.1 Measurement approach. Measuring conceptual distance is a major

methodological challenge, especially when studying large samples of ideation

processes (e.g., many designs across many design problems). The complex and

multifaceted nature of typical design problems can make it difficult to distin-

guish ‘within’ and ‘between’ domain sources in a consistent and principled
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manner. Further, using only a binary scale risks losing variance information

that could be critical for converging on a more precise understanding of the

effects of conceptual distance (e.g., curvilinear effects across the continuum

of distance). Continuous distance measures are an attractive alternative, but

can be extremely costly to obtain at this scale, especially for naturalistic sour-

ces (e.g., relatively developed text descriptions vs. simple sketches or one-to-

two sentence descriptions). Human raters may suffer from high levels of fa-

tigue, resulting in poor reliability or drift of standards.

We address this methodological challenge with probabilistic topic modeling

(Blei, 2012; Steyvers & Griffiths, 2007), a major computational approach for

understanding large collections of unstructured text. They are similar to other

unsupervised machine learning methods d e.g., K-means clustering, and

Latent Semantic Analysis (Deerwester, Dumais, Furnas, & Landauer, 1990)

d but distinct in that they emphasize human understanding of not just the

relationship between documents in a collection, but the ‘reasons’ for the hy-

pothesized relationships (e.g., the ‘meaning’ of particular dimensions of vari-

ation), largely because the algorithms underlying these models tend to produce

dimensions in terms of clusters of tightly co-occurring words. Thus, they have

been used most prominently in applications where understanding of a corpus,

not just information retrieval performance, is a high priority goal, e.g., knowl-

edge discovery and information retrieval in repositories of scientific papers

(Griffiths & Steyvers, 2004), describing the structure and evolution of scientific

fields (Blei & Lafferty, 2006, 2007), and discovering topical dynamics in social

media use (Schwartz et al., 2013).

We use Latent Dirichlet Allocation (LDA; Blei, Ng, Jordan, & Lafferty, 2003),

the simplest topic model. LDA assumes that documents are composed of a

mixture of latent ‘topics’ (occurring with different ‘weights’ in the mixture),

which in turn generate the words in the documents. LDA defines topics as

probability distributions over words: for example, a ‘genetics’ topic can be

thought of as a probability distribution over the words {phenotype, popula-

tion, transcription, cameras, quarterbacks}, such that words closely related

to the topic {phenotype, population, transcription} have a high probability

in that topic, and words not closely related to the topic {cameras, quarter-

backs} have a very low probability. Using Bayesian statistical learning algo-

rithms, LDA infers the latent topical structure of the corpus from the co-

occurrence patterns of words across documents. This topical structure in-

cludes 1) the topics in the corpus, i.e., the sets of probability distributions

over words, and 2) the topic mixtures for each document, i.e., a vector of

weights for each of the corpus topics for that document.We can derive concep-

tual similarity between any pair of documents by computing the cosine be-

tween their topic-weight vectors. In essence, documents that share dominant

topics in similar relative proportions are the most similar.
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Here, we used the open-source MAchine Learning for LanguagE Toolkit

(MALLET; McCallum, 2002) to train an LDA model with 400 topics for all

documents in the full dataset, i.e., 2341 concepts, 4557 inspirations, and 12

challenge briefs (6910 total documents). Additional technical details on the

model-building procedure are available in Appendix A. Resulting cosines be-

tween inspirations and the challenge brief ranged from 0.01 to 0.91 (M ¼ 0.21,

SD ¼ 0.18), a fairly typical range for large-scale information retrieval applica-

tions (Jessup & Martin, 2001).

2.3.2.2 Validation. Since we use LDA’s measures of conceptual distance as

a substitute for human judgments, we validate the adequacy of our topic model

using measures of fit with human similarity judgments on a subset of the data

by trained human raters.

Five trained raters used a Likert-type scale to rate 199 inspirations from one

OpenIDEO challenge for similarity to their challenge brief, from 1 (very dissim-

ilar) to 6 (extremely similar). Raters were given the intuition that the rating

would approximately track the proportion of ‘topical overlap’ between each

inspiration and the challenge brief, or the extent to which they are ‘about the

same thing.’ The design challenge context was explicitly deemphasized, so as

to reduce the influence of individual differences in perceptions of the ‘relevance’

of sources of inspiration. Thus, the raters were instructed to treat all the docu-

ments as ‘documents’ (e.g., an article about some topics, vs. ‘problem solution’)

and consciously avoid judging the ‘value’ of the inspirations, simply focusing

on semantic similarity. Raters listedmajor topics in the challenge brief and eval-

uated each inspiration against those major topics. To ensure internal consis-

tency, the raters also sorted the inspirations by similarity after every 15e20

judgments. They then inspected the rank ordering and composition of inspira-

tions at each point in the scale, and made adjustments if necessary (e.g., if an

inspiration previously rated as ‘1’ now, in light of newly encountered inspira-

tions, seemed more like a ‘2’ or ‘3’). Although the task was difficult, the mean

ratings across raters had an acceptable aggregate consistency intra-class corre-

lation coefficient (ICC(2,5)) of 0.74 (mean inter-coder correlation¼ 0.36). LDA

cosines correlated highly, at r ¼ 0.51, 95% CI ¼ [0.40, 0.60], with the contin-

uous human similarity judgments (see Figure 4A).We note that this correlation

is better than the highest correlation between human raters (r¼ 0.48), reinforc-

ing the value of automatic coding methods for this difficult task.

For comparability with prior work, we also measure fit with binary (within- vs.

between-domain) distance ratings. Two raters also classified 345 inspirations

from a different challenge as either within- or between-domain. Raters first

collaboratively defined the problem domain, focusing on the question, ‘What

is the problem to be solved?’ before rating inspirations. Within-domain inspi-

rations were information about the problem (e.g., stakeholders, constraints)
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and existing prior solutions for very similar problems, while between-domain

inspirations were information/solutions for analogous or different problems.

Reliability for this measure was acceptable, with an overall average kappa of

0.78 (89% agreement). All disagreements were resolved by discussion. Similar

to the continuous similarity judgments, the point biserial correlation between

the LDA-derived cosine and the binary judgments was also high, at 0.50,

95% CI ¼ [0.42, 0.58]. The mean cosine to the challenge brief was also higher

for within-domain (M ¼ 0.49, SD ¼ 0.25, N ¼ 181) vs. between-domain inspi-

rations (M ¼ 0.23, SD ¼ 0.20, N ¼ 164), d ¼ 1.16, 95% CI ¼ [1.13, 1.19] (see

Figure 4B), further validating the LDA approach to measuring distance.

Figure 5 shows examples of a near and far inspiration (from the e-waste chal-

lenge), along with the top 3 LDA topics (represented by the top 5words for that

latent topic), computed cosine vs. its challenge brief, and human similarity rat-

ing. The top 3 topics for the challenge brief are {waste, e, recycling, electronics,

electronic}, {waste, materials, recycling, recycled, material}, and {devices, elec-

tronics, electronic, device, products}, distinguishing e-waste, general recycling,

and electronics products topics. These examples illustrate how LDA is able to

effectively extract the latent topical mixture of the inspirations from their text

(inspirations with media also include textual descriptions of the media, miti-

gating concerns about loss of semantic information due to using only text as

input to LDA) and also capture intuitions about variations in conceptual dis-

tance among inspirations: a document about different ways of assigning value

to possessions is intuitively conceptually more distant from the domain of e-

waste than a document about a prior effort to address e-waste.

The near and far examples depicted in Figure 5 also represent the range of con-

ceptual distance measured in this dataset, with the near inspiration’s cosine of

0.64 representing approximately the 90th percentile of similarity to the chal-

lenge domain, and the far inspiration’s cosine of 0.01 representing approxi-

mately the 10th percentile of similarity to the challenge domain. Thus, the

range of conceptual distance of inspirations in this data spans approximately

Figure 4 (A) Scatterplot of LDA cosines vs. averaged human continuous similarity judgments for inspirations in the e-waste challenge. (B).

Mean cosine against the challenge brief for within- vs. between-domain inspirations
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from sources that are very clearly within the domain (e.g., an actual solution

for the problem of electronic waste involving recycling of materials) to sources

that are quite distant, but not obviously random (e.g., an observation of how

people assign emotional value to relationships and artifacts). This range most

likely excludes the ‘too far’ example designs studied in Fu et al. (2013) or the

‘opposite stimuli’ used in Chiu and Shu (2012).

2.3.2.3 Final distance measures. The challenge briefs varied in length and

specificity across challenges, as did mean raw cosines for inspirations. But,

these differences in mean similarity were much larger, d ¼ 1.90, 95%

CI ¼ [1.85e1.92] (for 80 inspirations from 4 challenges with maximally

different mean cosines), than for human similarity judgments (coded sepa-

rately but with the same methodology as before), d ¼ 0.18, 95%

CI ¼ [e0.05 to 0.43]. This suggested that between-challenge differences were

more an artifact of variance in challenge brief length/specificity. Thus, to

ensure meaningful comparability across challenges, we normalized the cosines

by computing the z-score for each inspiration’s cosine relative to other inspi-

rations from the same challenge before analyzing the results in the full dataset.

However, similar results are found using raw cosines, but with more uncer-

tainty in the statistical coefficient estimates.

We then subtracted the cosine z-score from zero such that larger values meant

more distant. From these ‘reversed’ cosine z-scores, two different distance

Figure 5 Topics found by LDA within examples of near and far inspirations for the e-waste challenge
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measures were computed to tease apart possibly distinct effects of source dis-

tance: 1) max distance (DISTMAX), i.e., the distance of a concept’s furthest

source from the problem domain and 2) mean distance (DISTMEAN) of the

concept’s sources. DISTMAX estimates ‘upper bounds’ for the benefits of dis-

tance: do the best ideas really come from the furthest sources?DISTMEAN cap-

italizes on the fact that many concepts relied on multiple inspirations and

estimates the impact of the relative balance of relying on near vs. far sources

(e.g., more near than far sources, or vice versa).

2.3.3 Control measures
Given our correlational approach, it is important to identify and rule out or

adjust for other important factors that may influence the creativity of concepts

(particularly in the later stages, where prototyping and feedback are especially

important) and may be correlated with the predictor variables.

Feedback. Given the collaborative nature of OpenIDEO, we reasoned that

feedback in the form of comments (labeled here as FEEDBACK) influences

success. Comments can offer encouragement, raise issues/questions, or pro-

vide specific suggestions for improvement, all potentially significantly

enhancing the quality of the concept. Further, feedback may be an alternate

pathway to success via source distance, in that concepts that build on far sour-

ces may attract more attention and therefore higher levels of feedback, which

then improve the quality of the concept.

Quality of cited sources. Concepts that build on existing high-quality concepts

(e.g., those who end up being shortlisted or chosen as winners) have a partic-

ular advantage of being able to learn from the mistakes and shortcomings,

good ideas, and feedback in these high-quality concepts. Thus, as a proxy mea-

sure of quality, the number of shortlisted concepts a given concept builds upon

(labeled SOURCESHORT) could be a large determinant of a concept’s

success.

2.4 Analytic approach
We are interested in predicting the creative outcomes of 707 concepts,

posted by 357 authors for 12 different design challenges. Authors are not

cleanly nested within challenges, nor vice versa; our data are cross-

classified, with concepts cross-classified within both authors and challenges

(see Figure 6). This cross-classified structure violates assumptions of uni-

form independence between concepts: concepts posted by the same author

or within the same challenge may be more similar to each other. Failing

to account for this non-independence could lead to overestimates of the sta-

tistical significance of model estimates (i.e., make unwarranted claims of sta-

tistically significant effects). This issue is exacerbated when testing for small

effects. Additionally, modeling between-author effects allows us to separate

author-effects (e.g., higher/lower creativity) from the impact of sources on
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individual concepts Thus, we employ generalized linear mixed models (also

called hierarchical generalized linear models) to model both fixed effects (of

our independent and control variables) and random effects (potential varia-

tion of the outcome variable attributable to author- or challenge-nesting and

also potential between-challenge variation in the effect of distance) on short-

list status (a binary variable, which requires logistic, rather than linear,

regression).

An initial model predicting the outcome with only the intercept and between-

challenge and -author variation confirms the presence of significant non-

independence, with between-author and between-challenge variation in short-

list outcomes estimated at 0.44, and 0.50, respectively. The intra-class correla-

tions for author-level and challenge-level variance in the intercept are w0.11

and 0.13, respectively, well above the cutoff recommended by Raudenbush

and Bryk (2002).1

3 Results

3.1 Descriptive statistics
On average, 16% of concepts in the sample get shortlisted (see Table 2). DIS-

TMEAN is centered approximately at 0, reflecting our normalization procedure.

Both DISTMAX and DISTMEAN have a fair degree of negative skew. SOUR-

CESHORT and FEEDBACK have strong positive skew (most concepts either

have few comments or cite 0 or 1 shortlisted concepts).

There is a strong positive relationship between DISTMAX and DISTMEAN (see

Table 3). All variables have significant bivariate correlations with SHORT-

LIST except for DISTMAX; however, since it is a substantive variable of inter-

est, we will model it nonetheless. Controlling for other variables might enable

us to detect subtle effects.

Figure 6 Illustrated cross-classified structure of the data
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3.2 Statistical models
We estimated separate models for the effects of DISTMAX and DISTMEAN,

each controlling for challenge- and author-nesting, FEEDBACK, and

SHORTSOURCE.

3.2.1 Max distance
Our model estimated an inverse relationship between DISTMAX and

Pr(shortlist), such that a 1-unit increase in DISTMAX predicted a 0.33

decrease in the log-odds of being shortlisted, after accounting for the effects

of FEEDBACK, SHORTSOURCE, and challenge- and author-level nesting,

p < .05 (see Appendix B for technical details on the statistical models). How-

ever, this coefficient was estimated with considerable uncertainty, as indi-

cated by the large confidence intervals (coefficient could be as small as

$0.06 or as large as $0.60); considering also the small bivariate correlation

with SHORTLIST, we are fairly certain that the ‘true’ coefficient is not pos-

itive (contra the Conceptual Leap Hypothesis), but we are quite uncertain

about its magnitude.

Figure 7 visually displays the estimated relationship between DISTMAX and

Pr(shortlist), evaluated at mean values of feedback and shortlisted sources.

To aid interpretation, we also plot the predicted Pr(shortlist) for concepts

that cite no sources using a horizontal gray bar (bar width indicates uncertainty

in estimate of Pr(shortlist)): concepts with approximately equivalent amounts

of feedback (i.e., mean of 8.43), have a predicted Pr(shortlist ¼ 0.09, 95%

CI ¼ [0.07e0.11]; using a logistic model, the coefficient for ‘any citation’ (con-

trolling for feedback) is 0.31, 95% CI ¼ [0.01e0.62]). This bar serves as an

approximate ‘control’ group, allowing us to interpret the effect not just in terms

of the effects of far sources relative to near sources, but also in comparison with

using no sources. Comparing the fitted curve with this bar highlights how the

Table 2 Descriptive statistics

Variable Valid N Min Max Mean Median SD

SHORTLIST 707 0.00 1.00 0.16 0.00 0.36
DISTMAX 707 $3.85 1.90 0.45 0.76 0.85
DISTMEAN 707 $3.85 1.67 $0.10 0.01 0.85
SOURCESHORT 707 0 11 0.51 0 0.96
FEEDBACK 707 0 67 8.43 6 9.45

Table 3 Bivariate correlations

Variable DISTMAX DISTMEAN SOURCESHORT FEEDBACK

SHORTLIST $0.05 $0.10* 0.11** 0.33***
DISTMAX 0.77*** 0.05 0.07m

DISTMEAN $0.05 0.01
SOURCESHORT 0.12**

mp < .10; *p < .05; **p < .01; ***p < .001.
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advantage of citing vs. not citing inspirations seems to be driven mostly by cit-

ing relatively near inspirations: Pr(shortlist) for concepts that cite far inspira-

tions converges on that of no-citation concepts. We emphasize again that,

despite the uncertainty in the degree of the negative relationship between DIS-

TMAX and Pr(shortlist), the data do not support an inference that the best ideas

are coming from the farthest inspirations: rather, relying on nearer rather than

farther sources seems to lead to more creative design ideas. Importantly, this

pattern of results was robust across challenges on the platform: the model esti-

mated essentially zero between-challenge variation in the slope of DISTMAX.

c2(2) ¼ 0.05, p ¼ .49 (see Figure 8).

3.2.2 Mean distance
Similar results were obtained for DISTMEAN. There was a robust inverse rela-

tionship between DISTMEAN and Pr(shortlist), such that a 1-unit increase in

DISTMEAN was associated with a decrease of approximately 0.40 in the log-

odds of being shortlisted, p < .05. The estimates of this effect were obtained

with similarly low precision regarding the magnitude of the effect, with 95%

CI upper limit of at most B ¼ $0.09 (but as high as $0.71). As shown in

Figure 9, as DISTMEAN increases, Pr(shortlist) approaches that of non-citing

concepts, again suggesting (as withDISTMAX) that the most beneficial sources

appear to be ones that are relatively close to the challenge domain. Again, as

with DISTMAX, this pattern of results did not vary across challenges: our

model estimated essentially zero between-challenge variation in the slope of

DISTMEAN, c
2(2) ¼ 0.07, p ¼ .48 (see Figure 10).

4 Discussion

4.1 Summary and interpretation of findings
This study explored how the inspirational value of sources varies with their

conceptual distance from the problem domain along the continuum from

near to far. The study’s findings provide no support for the notion that the

best ideas come from building explicitly on the farthest sources. On the

Figure 7 Model-fitted rela-

tionship between DISTMAX

and Pr(shortlist), evaluated

at mean values of feedback

and source shortlist. Grayed

lines are fits with upper and

lower limits for 95% CI for

effect of DISTMAX
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Figure 8 Overall and by-

challenge model-fitted rela-

tionship between DISTMAX

and Pr(shortlist). Fitted

values evaluated at mean

values of feedback and source

shortlist. Grayed lines are fits

for each individual challenge

Figure 9 Model-fitted rela-

tionship between DISTMEAN

and Pr(shortlist), evaluated

at mean values of feedback

and source shortlist. Grayed

lines are fits with upper and

lower limits for the 95% CI

for the effect of DISTMEAN

Figure 10 Overall and by-

challenge model-fitted rela-

tionship between DISTMEAN

and Pr(shortlist). Fitted

values evaluated at mean

values of feedback and source

shortlist. Grayed lines are fits

for each individual challenge
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contrary, the benefits of building explicitly on inspirations seem to accrue

mainly for concepts that build more on near than far inspirations. Impor-

tantly, these effects were consistently found in all of the challenges, addressing

concerns raised about potential problem variation, at least among non-routine

social innovation design problems.

4.2 Caveats and limitations
Some caveats should be discussed before addressing the implications of this

study. First, the statistical patterns observed here are conditional: i.e., we

find an inverse relationship between conceptual distance of explicitly cited

inspiration sources and Pr(shortlist). Our data are silent on the effects of dis-

tance for concepts that did not cite sources (where lack of citation could indi-

cate forgetting of sources or lack of conscious building on sources).

There is a potential concern over range restriction or attrition due to our reli-

ance on self-identified sources. However, several features of the data help to

ameliorate this concern. First, concepts that did not cite sources were overall

of lower quality; thus, it is unlikely that the inverse effects of distance are solely

due to attrition (e.g., beneficial far inspirations not being observed). Second,

the integration of citations and building on sources into the overall OpenI-

DEO workflow and philosophy of ideation also helps ameliorate concerns

about attrition of far sources. Finally, the dataset included many sources

that were quite far away, providing sufficient data to statistically test the effects

of relative reliance on far sources (even if they are overall under-reported).

Nevertheless, we should still be cautious about making inferences about the

impact of unconscious sources (since sources in this data are explicitly cited

and therefore consciously built upon). However, as we note in the methods,

Table 4 Model estimates and fit statistics for cross-classified multilevel logistic regressions of Pr(shortlist) on DISTMAX, with
comparison to baseline model (controls only)

Baseline model
(controls only)

DISTMAX,
fixed slope

DISTMAX,
random slope

Fixed effects
g00, intercept $2.66 [$3.28, $2.03] $2.57 [$3.29, $2.05] $2.57 [$3.29, $2.05]
g10, FEEDBACK 0.09*** [0.07, 0.12] 0.10*** [0.07, 0.12] 0.10*** [0.07, 0.12]
g20, SOURCESHORT 0.14 [$0.08, 0.36] 0.15 [$0.07, 0.38] 0.15 [$0.07, 0.38]
g30, DISTMAX $0.33* [$0.60, $0.06] $0.32* [$0.59, $0.06]

Random effects
u0authorj for intercept 0.29 0.31 0.32
u0challengek for intercept 0.75 0.76 0.74
u3challengek for DISTMAX 0.00

Model fit statistics
Deviance 511.39 506.04 505.99
AIC 521.39 518.04 521.99

mp < .10; *p < .05; **p < .01; ***p < .001; 95% CI (Wald) ¼ [lower, upper].
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the Conceptual Leap Hypothesis maps most cleanly to conscious inspiration

processes (e.g., analogy).

Finally, some may be concerned that we have not measured novelty here.

Conceivably, the benefits of distance may only be best observed for the novelty

of ideas, and not necessarily quality, consistent with some recent work

(Franke, Poetz, & Schreier, 2014). However, novelty per se does not produce

creativity; we contend that to fully understand the effects of distance on design

creativity, we must consider its impacts on both novelty and quality together

(as our shortlist measure does).

4.3 Implications and future directions
Overall, our results consistently stand in opposition to the Conceptual Leap

Hypothesis. In tandem with prior opposing findings (reviewed in the introduc-

tion), our work lends strength to alternative theories of inspiration by theorists

like Perkins (1983), who argues that conceptual distance does not matter, and

Weisberg (2009, 2011), who argues that within-domain expertise is a primary

driver of creative cognition. We should be clear that our findings do not imply

that no creative ideas come from far sources (indeed, in our data, some creative

ideas did come from far sources); rather, our data suggest that the most crea-

tive design ideas are more likely to come from relying on a preponderance of

nearer rather than farther sources. However, our data do suggest that highly

creative ideas can often come from relying almost not at all on far sources

(as evidenced by the analyses with maximum distance of sources). These

good ideas may arise from iterative, deep search, a mechanism for creative

breakthroughs that may be often overlooked but potentially at least as impor-

tant as singular creative leaps (Chan & Schunn, 2014; Dow, Heddleston, &

Table 5 Model estimates and fit statistics for cross-classified multilevel logistic regressions of Pr(shortlist) on DISTMEAN,
with comparison to baseline model (controls only)

Baseline model
(controls only)

DISTMEAN,
fixed slope

DISTMEAN,
random slope

Fixed effects
g00, intercept $2.66 [$3.28, $2.03] $2.74 [$3.36, $2.11] $2.74 [$3.36, $2.11]
g10, FEEDBACK 0.09*** [0.07, 0.12] 0.10*** [0.07, 0.12] 0.10*** [0.07, 0.12]
g20, SOURCESHORT 0.14 [$0.08, 0.36] 0.13 [$0.09, 0.35] 0.13 [$0.09, 0.35]
g30, DISTMEAN $0.40* [$0.71, $0.09] $0.40* [$0.73, $0.07]

Random effects
u0authorj for intercept 0.29 0.31 0.30
u0challengek for intercept 0.75 0.73 0.73
u3challengek for DISTMEAN 0.03

Model fit statistics
Deviance 511.39 505.13 505.06
AIC 521.39 517.13 521.06

mp < .10; *p < .05; **p < .01; ***p < .001; 95% CI (Wald) ¼ [lower, upper].
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Klemmer, 2009; Mecca & Mumford, 2013; Rietzschel, Nijstad, & Stroebe,

2007; Sawyer, 2012; Weisberg, 2011). In light of this and our findings, it

may be fruitful to deemphasize the privileged role of far sources and mental

leaps in theories of design inspiration and creative cognition.

How might this proposed theoretical revision be reconciled with the relatively

robust finding that problem solvers from outside the problem domain can

often produce the most creative ideas (Franke et al., 2014; Hargadon &

Sutton, 1997; Jeppesen & Lakhani, 2010)? Returning to our reflections on

the potential costs of processing far sources, one way to reconcile the two

sets of findings might be to hypothesize that expertise in the distant source

domain enables the impact of distant ideas by bypassing the cognitive costs

of deeply understanding the far domain, and filters out shallow inferences

that are not likely to lead to deep insights. Hargadon and Sutton’s (1997) find-

ings from their in-depth ethnographic study of the consistently innovative

IDEO design firm are consistent with an expertise-mediation claim: the firm’s

cross-domain-inspired innovations appeared to flow at the day-to-day process

level mainly from deep immersion of its designers in multiple disciplines, and

‘division of expertise’ within the firm, with brainstorms acting as crucial cata-

lysts for involving experts from different domains on projects. However,

studies directly testing expertise-mediation are scarce or non-existent.

Further, the weight of the present data, combined with prior studies showing

no advantage of far sources, suggests that considering alternative mechanisms

of outside-domain advantage may be more theoretically fruitful: for instance,

perhaps the advantage of outside-domain problem-solvers arises from the

different perspectives they bring to the problem d allowing for more flexible

and alternative problem representations, which may lead to breakthrough in-

sights (Kaplan & Simon, 1990; Knoblich, Ohlsson, Haider, & Rhenius, 1999;
€Ollinger, Jones, Faber, & Knoblich, 2012). Domain-outsiders may also have a

looser attachment to the status quo or prior successful solutions by virtue of

being a ‘newcomer’ to the domain (Choi & Levine, 2004) d leading to higher

readiness to consider good ideas that challenge existing assumptions within the

domain d rather than knowledge and transfer of different solutions per se.

Finally, it would be interesting to examine potential moderating influences of

source processing strategies. In our data, closer sources were more beneficial,

but good ideas also did come from far sources; however, as we have argued, it

can be more difficult to convert far sources into viable concepts. Are there

common strategies for effective conversion of far sources, and are they

different from strategies for effectively building on near sources? For example,

one effective strategy for building on sources while avoiding fixation is to use a

schema-based strategy (i.e., extract and transfer abstract functional principles

rather than concrete solution features; Ahmed & Christensen, 2009; Yu,

Kraut, & Kittur, 2014). Are there processing strategies that expert creative
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designers apply uniquely to far sources (e.g., to deal with potentially un-

alignable differences)? Answering this question can shed further light on the

variety of ways designers can be inspired by sources to produce creative design

ideas.

We close by noting the methodological contribution of this work.While we are

not the first to use topic modeling to explore semantic meaning in a large

collection of documents, we are the first to our knowledge to validate this

method in the context of large-scale study of design ideas. We have shown

that the topic model approach adequately captures human intuitions about

the semantics of the design space, while providing dramatic savings in cost:

indeed, such an approach can make more complex research questions (e.g.,

exploring pairwise distances between design idea or, tracing conceptual

paths/moves in a design ideation session) much more feasible without sacri-

ficing too much quality. We believe this approach can be a potentially valuable

way for creativity researchers to study the dynamics of idea generation at scale,

while avoiding the (previously inevitable) tradeoff between internal validity

(e.g., having adequate statistical power) and external validity (e.g., using

real, complex design problems and ideas instead of toy problems).

Appendix A. Topic model technical details

A.1. Document preprocessing
All documents were first tokenized using the TreeBank Tokenizer from the

open-source Natural Language Tool Kit Python library (Bird, Klein, &

Loper, 2009). To improve the information content of the document text, we

removed a standard list of stopwords, i.e., highly frequent words that do

not carry semantic meaning on their own (e.g., ‘the’, ‘this’). We used the

open-source MAchine Learning for LanguagE Toolkit’s (MALLET;

McCallum, 2002) stopword list.

A.2. Model parameter selection
We used MALLET to train our LDA model, with asymmetric priors for the

topic-document and topic-word distributions, which allows for some words

to be more prominent than others and some topics to be more prominent

than others, typically improving model fit and performance (Wallach,

Mimno, & McCallum, 2009). Priors were optimized using MALLET’s in-

package optimization option.

LDA requires that K (the number of topics) be prespecified by the modeler.

Model fit typically improves with K, with diminishing returns past a certain

point. Intuitively, higher K leads to finer-grained topical distinctions, but

too high K may lead to uninterpretable topics; on the other hand, too low K

would yield too general topics. Further, traditional methods of optimizing K

(computing ‘perplexity’, or the likelihood of observing the distribution of
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words in the corpus given a topic model of the corpus) do not always correlate

with human judgments of model quality (e.g., domain expert evaluations of

topic quality; Chang, Gerrish, Wang, Boyd-graber, & Blei, 2009).

We explored the following settings of K: [12, 25, 50, 100, 200, 300, 400, 500,

600, 700]. Because the optimization algorithm for the prior parameters is

nondeterministic, models with identical K might produce noticeably different

topic model solutions, e.g., if the optimization search space is rugged, the al-

gorithm might get trapped in different local maxima. Therefore, we ran 50

models at each K, using identical settings (i.e., 1000 iterations of the Gibbs

sampler, internally optimizing parameters for the asymmetric priors).

Figure 11 shows the mean fit (with both continuous and binary similarity judg-

ments) at each level of K.

Model fit is generally fairly high at all levels of K, with the continuous judg-

ments tending to increase very slightly with K, tapering out past 400. Fit

with binary judgments tended to decrease (also very slightly) with K, probably

reflecting the decreasing utility of increasingly finer-grained distinctions for a

binary same/different classification. Because we wanted to optimize for fit with

human judgments of conceptual distance overall, we selected the level of K at

which the divergent lines for fit with continuous and binary judgments first

begin to cross (i.e., atK¼ 400). Subsequently, we created a combined ‘fit’ mea-

sure (sum of the correlation coefficients for fit vs. continuous and binary judg-

ments), and selected the model with K ¼ 400 that had the best overall fit

measure. However, as we report in the next section, the results of our analyses

are robust to different settings of K.

Figure 11 Mean fit (with %1 SE) vs. human judgments for LDA cosines by level of K

Appendix B. Statistical modeling technical details

B.1. Statistical modeling approach
All models were fitted using the lme4 package (Bates, Maechler, Bolker, &

Walker, 2013) in R (R Core Team, 2013), using full maximum likelihood esti-

mation by the Laplace approximation. The following is the general structure

of these models (in mixed model notation):
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hiðauthorjchallengekÞ ¼ g00 þ
X

q

gq0Xqi þ u0authorj þ u0challengek

where

) hiðauthorjchallengekÞ is the predicted log odds of being shortlisted for the ith

concept posted by the jth author in the kth challenge

) g00 is the grand mean log odds for all concepts

) gq0 is a vector of q predictors (q ¼ 0 for our null model)

) u0authorj and u0challengek are the random effects contribution of variation

between-authors and between-challenges for mean g00 (i.e., how much a

given author or challenge varies from the mean)

A baseline model with only control variables and variance components was

first fitted. Then, for the models for both DISTMAX and DISTMEAN, we first

estimated a model with a fixed effect of distance, and then a random effect

(to test for problem variation). These random slopes models include the addi-

tional parameter u1challengek that models the between-challenge variance

component for the slope of distance.

B.2. Model selection
Estimates and test statistics for each step in our model-building procedure are

shown in Tables 4 and 5. We first fitted a model predicting Pr(shortlist) with

our control variables to serve as a baseline for evaluating the predictive power

of our distance measures. The baseline model estimates a strong positive effect

of FEEDBACK, estimated with high precision: each additional comment

added 0.10 [0.07, 0.12] to the log-odds of being shortlisted, p< .001. The model

also estimated a positive effect of SHORTSOURCE, B ¼ 0.14 [e0.08, 0.36]

but with poor precision, and falling short of conventional statistical signifi-

cance, p ¼ .21; nevertheless, we leave it in the model for theoretical reasons.

The baseline model is a good fit to the data, reducing deviance from the null

model (with no control variables) by a large and statistically significant

amount, c2(1) ¼ 74.35, p ¼ .00.

For the fixed slope model for DISTMAZ, adding the coefficient for results in a

significant reduction in deviance from the baseline model, c2(2) ¼ 0.13,

p¼ .47. The random slope model did not significantly reduce deviance in com-

parison with the simpler fixed slope model, c2(2) ¼ 0.05, p ¼ .49 (p-value is

halved, heeding common warnings that a likelihood ratio test discriminating

two models that differ on only one variance component may be overly conser-

vative, e.g., Pinheiro & Bates, 2000). Also, the Akaike Information Criterion

(AIC) increases from the fixed to random slope model. Thus, we select the

fixed slope model (i.e., no problem-variation) as our best estimate of the effects

of DISTMAX. This final model has an overall deviance reduction vs. null at

c2(3) ¼ 79.71, p ¼ .00.
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We used the same procedure for model selection for the DISTMEAN models.

The fixed slope model results in a small but significant reduction in deviance

from the baseline model, c2(1) ¼ 6.27, p ¼ .01. Adding the variance compo-

nent for the slope of DISTMEAN increases the AIC, and does not significantly

reduce deviance, c2(2) ¼ 0.07, p ¼ .48 (again, p-value here is halved to correct

for overconservativeness). Thus, again we select the fixed slope model as our

final model for the effects ofDISTMEAN. This final model has an overall reduc-

tion in deviance from the null model of about c2(3) ¼ 80.61, p ¼ .00.

B.3. Robustness and sensitivity
We tested the robustness of our coefficient estimates by calculating outlier in-

fluence statistics using the influence.measures method in the stats package in

R, applied to logistic regression model variants of both the DISTMEAN and

DISTMAX models (i.e., without author- and challenge-level variance compo-

nents; coefficient estimates are almost identical to the fixed slope multilevel

models): DFBETAS and Cook’s Distance measures were below recommended

thresholds for all data points (Fox, 2002).

Addressing potential concerns about sensitivity to topic model parameter set-

tings, we also fitted the same fixed slope multilevel models using recomputed

conceptual distance measures for the top 20 (best-fitting) topic models at

K ¼ 200, 300, 400, 500, and 600 (total of 100 models). All models produced

negative estimates for the effect of both DISTMEAN and DISTMAX, with

poorer precision for lower K. Thus, our results are robust to different settings

of K for the topic models.

We also address potential concerns about interactions with expertise by fitting

a model that allowed the slope of distance to vary by authors. In this model,

the overall mean effect of distance remained almost identical (B ¼ $0.46), and

the model’s fit was not significantly better than the fixed slope model,

c2(3) ¼ 3.44, p ¼ .16, indicating a lack of statistically significant between-

author variability for the slope of distance.

Finally, we also fitted models that considered not just immediately cited inspi-

rations, but also indirectly cited inspirations (i.e., inspirations cited by cited in-

spirations), and they too yielded almost identical coefficient estimates and

confidence intervals.

References
Ahmed, S., & Christensen, B. T. (2009). An in situ study of analogical reasoning

in novice and experienced designer engineers. Journal of Mechanical Design,
131(11), 111004.

Amabile, T. M. (1982). Social psychology of creativity: a consensual assessment
technique. Journal of Personality and Social Psychology, 43(5), 997e1013.

Baer, J., & McKool, S. S. (2009). Assessing creativity using the consensual assess-
ment technique. In C. S. Schreiner (Ed.), Handbook of research on assessment

24 Design Studies Vol -- No. -- Month 2014

Please cite this article in press as: Chan, J., et al., Do the best design ideas (really) come from conceptually distant sources
of inspiration?, Design Studies (2014), http://dx.doi.org/10.1016/j.destud.2014.08.001

http://refhub.elsevier.com/S0142-694X(14)00061-1/sref1
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref1
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref1
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref2
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref2
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref2
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref3
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref3


technologies, methods, and applications in higher education (pp. 65e77), Her-
shey, PA.

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2013). Lme4: Linear mixed-
effects models using eigen and S4. R package version 1.0-5. [Computer soft-
ware]. Retrieved from. http://CRAN.R-project.org/package¼lme4.

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with python.
O’Reilly Media Inc.

Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM,
55(4), 77e84.

Blei, D. M., & Lafferty, J. D. (2006). Dynamic topic models. In Proceedings of the
23rd international conference on machine learning (pp. 113e120).

Blei, D. M., & Lafferty, J. D. (2007). A correlated topic model of science. The
Annals of Applied Statistics 17e35.

Blei, D. M., Ng, A. Y., Jordan, M. I., & Lafferty, J. (2003). Latent
Dirichlet allocation. Journal of Machine Learning Research 993e1022.

Brown, R. T. (1989). Creativity: what are we to measure? In J. A. Glover,
R. R. Ronning, & C. R. Reynolds (Eds.), Handbook of creativity (pp. 3e32),
New York, NY.

Brown, A. S., & Murphy, D. R. (1989). Cryptomnesia: delineating inadvertent
plagiarism. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 15(3), 432e442.

Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J.,
Robinson, E. S. J., et al. (2013). Power failure: why small sample size under-
mines the reliability of neuroscience. Nature Reviews Neuroscience, 14(5),
365e376. http://dx.doi.org/10.1038/nrn3475.

Chakrabarti, A. (2006). Defining and supporting design creativity. In Proceedings
of the 9th international design conference DESIGN 2006 (pp. 479e486).

Chan, J., Fu, K., Schunn, C. D., Cagan, J., Wood, K. L., & Kotovsky, K. (2011).
On the benefits and pitfalls of analogies for innovative design: ideation perfor-
mance based on analogical distance, commonness, and modality of examples.
Journal of Mechanical Design, 133, 081004.

Chang, J., Gerrish, S., Wang, C., Boyd-graber, J. L., & Blei, D. M. (2009).
Reading tea leaves: how humans interpret topic models. Advances in neural in-
formation processing systems 288e296.

Chan, J., & Schunn, C. (2014). The impact of analogies on creative concept gen-
eration: lessons from an in vivo study in engineering design. Cognitive Science.
http://dx.doi.org/10.1111/cogs.12127.

Chiu, I., & Shu, H. (2012). Investigating effects of oppositely related semantic
stimuli on design concept creativity. Journal of Engineering Design, 23(4),
271e296. http://dx.doi.org/10.1080/09544828.2011.603298.

Choi, H. S., & Levine, J. M. (2004). Minority influence in work teams: the impact
of newcomers. Journal of Experimental Social Psychology, 40(2), 273e280.

Dahl, D. W., & Moreau, P. (2002). The influence and value of analogical thinking
during new product ideation. Journal of Marketing Research, 39(1), 47e60.

Deerwester, S., Dumais, S. T., Furnas, G. W., & Landauer, T. K. (1990). Indexing
by latent semantic analysis. Journal of the American Society for Information
Science, 41(6), 1990.

Dow, S. P., Heddleston, K., & Klemmer, S. R. (2009). The efficacy of prototyping
under time constraints. In Proceedings of the 7th ACM conference on creativity
and cognition.

Dunbar, K. N. (1997). How scientists think: on-line creativity and conceptual
change in science. In T. B. Ward, S. M. Smith, & J. Vaid (Eds.), Creative

Inspiration source distance and design ideation 25

Please cite this article in press as: Chan, J., et al., Do the best design ideas (really) come from conceptually distant sources
of inspiration?, Design Studies (2014), http://dx.doi.org/10.1016/j.destud.2014.08.001

http://refhub.elsevier.com/S0142-694X(14)00061-1/sref3
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref3
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref3
http://cran.r-project.org/package=lme4
http://cran.r-project.org/package=lme4
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref5
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref5
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref6
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref6
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref6
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref7
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref7
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref7
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref8
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref8
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref8
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref9
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref9
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref9
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref10
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref10
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref10
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref10
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref11
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref11
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref11
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref11
http://dx.doi.org/10.1038/nrn3475
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref13
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref13
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref13
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref14
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref14
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref14
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref14
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref15
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref15
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref15
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref15
http://dx.doi.org/10.1111/cogs.12127
http://dx.doi.org/10.1080/09544828.2011.603298
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref18
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref18
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref18
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref19
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref19
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref19
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref20
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref20
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref20
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref21
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref21
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref21
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref22
http://refhub.elsevier.com/S0142-694X(14)00061-1/sref22


thought: An investigation of conceptual structures and processes (pp. 461e493),
Washington, D.C.

Dym, C. L. (1994). Engineering design: A synthesis of views. New York, NY: Cam-
bridge University Press.

Eckert, C., & Stacey, M. (1998). Fortune favours only the prepared mind: why
sources of inspiration are essential for continuing creativity. Creativity and
Innovation Management, 7(1), 1e12.

Enkel, E., & Gassmann, O. (2010). Creative imitation: exploring the case of cross-
industry innovation. R & D Management, 40(3), 256e270.

Findlay, A. (1965). A hundred years of chemistry (3rd ed.). London: Duckworth.
Fox, J. (2002). An R and s-plus companion to applied regression. Sage.
Franke, N., Poetz, M. K., & Schreier, M. (2014). Integrating problem solvers

from analogous markets in new product ideation. Management Science,
60(4), 1063e1081.

Freeman, A., & Golden, B. (1997). Why didn’t I think of that? Bizarre origins of
ingenious inventions we couldn’t live without. New York: John Wiley.

Fu, K., Chan, J., Cagan, J., Kotovsky, K., Schunn, C., & Wood, K. (2013). The
meaning of “near” and “far”: the impact of structuring design databases and
the effect of distance of analogy on design output. Journal of Mechanical
Design, 135(2), 021007. http://dx.doi.org/10.1115/1.4023158.

Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and sim-
ilarity. American Psychologist, 52(1), 45e56.

German, T. P., & Barrett, H. C. (2005). Functional fixedness in a technologically
sparse culture. Psychological Science, 16(1), 1e5.

Gero, J. S. (2000). Computational models of innovative and creative design pro-
cesses. Technological Forecasting and Social Change, 64(2), 183e196.

Goldschmidt, G., & Smolkov, M. (2006). Variances in the impact of visual stimuli
on design problem solving performance. Design Studies, 27(5), 549e569.
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Although concept-level variance is not estimated in mixed logistic regressions, we
follow Zeger, Liang, and Albert’s (1988) suggestion of (15/16)p3/3 as a reason-
able approximation for residual level-1 variance (the concept level in our case).
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Abstract

Research on innovation often highlights analogies from sources outside the current problem
domain as a major source of novel concepts; however, the mechanisms underlying this relation-
ship are not well understood. We analyzed the temporal interplay between far analogy use and
creative concept generation in a professional design team’s brainstorming conversations, investi-
gating the hypothesis that far analogies lead directly to very novel concepts via large steps in con-
ceptual spaces (jumps). Surprisingly, we found that concepts were more similar to their preceding
concepts after far analogy use compared to baseline situations (i.e., without far analogy use). Yet
far analogies increased the team’s concept generation rate compared to baseline conditions. Over-
all, these results challenge the view that far analogies primarily lead to novel concepts via jumps
in conceptual spaces and suggest alternative pathways from far analogies to novel concepts (e.g.,
iterative, deep exploration within a functional space).

Keywords: Analogy; Creativity; Design cognition; Problem solving; In vivo

1. Introduction

Innovation is a key output of human cognition and therefore an important object of
study for cognitive science. Arguably, the ability to produce novel artifacts that solve
some problem and bring significant value to stakeholders/society is comparable to other
great human intellectual achievements, such as great art, literature, and achieving detailed
understanding of the natural world through the scientific method. Consider the LIFE-
SAVER! portable filtration system, a durable, inexpensive, and portable means of turning
dirty and pathogen-ridden water into clean, life-saving drinkable water in seconds
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(Walters, 2013). It represents a viable solution to the extensive problem of water poverty,
sidestepping the major obstacle of infrastructure modification difficulties; in fact, it is
already transforming the lives of thousands of people in rural Borneo. How do innova-
tions like this arise from human minds and their interactions with their surroundings?

From both a practical and a theoretical standpoint, the mental representations and pro-
cesses that lead to innovation are a worthy topic of inquiry for cognitive science; practi-
cally, because of innovation’s cultural and economic importance, and theoretically,
because by virtue of its complex, multifaceted nature, it can serve as a test bed for theo-
ries of cognition. In decades of cognitive-based research on the topic of innovation,
researchers and theorists have uncovered the importance of collaboration and serendipity
(Sawyer, 2007), incubation (Christensen & Schunn, 2005; Seifert, Meyer, Davidson, Pata-
lano, & Yaniv, 1995; Tseng, Moss, Cagan, & Kotovsky, 2008), external representations
(Goel, 1995), and mental simulation (Ball & Christensen, 2009; Christensen & Schunn,
2009b), among others. Fundamental to innovation, however, is concept generation. One
cannot “make a silk purse out of a sow’s ear” (Kornish & Ulrich, 2014); execution and
implementation are critical, but innovation ultimately begins with good concepts. More
specifically, as some theorists would argue, “breakthrough” or “radical” innovation comes
from good concepts that are also very new (Boden, 2004).

The present work focuses on analogy, a cognitive process that has been hypothesized
to be a major source of new concepts. Analogy is a fundamental cognitive process in
which a source and target domain of knowledge are linked to one another by a system-
atic mapping of attributes and relations, which then allows for transfer of knowledge to
the target (French, 2002; Gentner, 1983; Gentner & Forbus, 2011; Holyoak & Thagard,
1996; Hummel & Holyoak, 1997). Theoretical accounts of analogy describe it as a central
cognitive mechanism for bridging seemingly disparate conceptual spaces, enabling think-
ing across categories and implicit conceptual boundaries (Gentner, 2003; Hofstadter,
2001; Holyoak & Thagard, 1996). This process appears to be important for generating
novel concepts in a wide variety of domains, perhaps most prominently in scientific
discovery (Clement, 1988; Dunbar, 1997; Gentner et al., 1997; Holyoak & Thagard,
1996; Nersessian, 1992; Oppenheimer, 1956) and—the domain of focus in this article—
technological invention and innovation. In technological innovation, analogies have been
associated with innovative outcomes in protocol studies and retrospective studies of
expert and prominent inventors and designers (Carlson & Gorman, 1990; Gorman, 1997),
experimental studies of design processes (Chan et al., 2011; Dahl & Moreau, 2002;
Goldschmidt, 2001; Vargas-Hernandez, Shah, & Smith, 2010), and computational models
of design (Gero & Kazakov, 1998). Analogy is also an important component of formal
innovative design methods, such as design-by-analogy (French, 1988; Gordon, 1961;
Hacco & Shu, 2002; Hey, Linsey, Agogino, & Wood, 2008; Linsey, Murphy, Laux,
Markman, & Wood, 2009).

Not all analogies are thought to be equally productive for creative outcomes. Many
theorists argue that, when considering the analogical distance of sources, far analogies—
that is, from sources that have a low degree of overlap of surface elements with the cur-
rent problem domain—hold the most potential for generating very new concepts (Gentner
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& Markman, 1997; Holyoak & Thagard, 1996; Poze, 1983; Ward, 1998). A number of
studies have shown that using or being stimulated by far analogies can increase produc-
tion of very new concepts relative to near or no analogies (Chan et al., 2011; Chiu &
Shu, 2012; Dahl & Moreau, 2002; Gonc!alves, Cardoso, & Badke-Schaub, 2013; Hender,
Dean, Rodgers, & Jay, 2002), although some studies have not replicated this finding
(Huh & Kim, 2012; Malaga, 2000; Wilson, Rosen, Nelson, & Yen, 2010).

How might far analogies lead to very novel concepts? One prominent hypothesis, bor-
rowing from the theoretical characterization of creative concept generation as search in a
space (Boden, 2004; Goel & Pirolli, 1992; Perkins, 1994, 1997; Simon, 1996), is that far
analogies enable “jumps” in the space of possible concepts. In other words, in contrast to
more incremental search strategies, such as hill climbing, using far analogies enables the
creator to “jump” to concepts that are very different from the set of concepts currently
considered. The early roots of this notion can be found in Koestler’s (1964) “bisociation”
theory of creativity, where he argues that the best concepts come from when two previ-
ously unrelated concepts are combined into a new concept that is highly original and dif-
ferent form current concepts. Mednick’s (1962) associative theory of creativity advances
a similar argument about far connections enabling jumps in associative space to a highly
creative concept. More recently, Perkins (1994, 1997) outlined the “canyon” problem as a
topographical challenge of search spaces for problems requiring innovation, where the
crucial insight may lie in a very distant part of the space, isolated from one’s current
location; importantly, he suggests that “analogy inherently has the power to step across
canyons by relating one domain to another” (Perkins, 1997, p. 534). The idea that crucial
insights may lie outside one’s domain is consistent with the rise of collaborations and
interdisciplinarity in science and technology (Jones, 2009; Paletz & Schunn, 2010;
Wuchty, Jones, & Uzzi, 2007). Social network theories of innovation also emphasize the
privileged position of agents positioned in “structural holes” in the information network
(Burt, 2004; Hargadon, 2002; Ruef, 2002; Tortoriello & Krackhardt, 2010), being able to
bridge knowledge and resources from structurally separated regions of the network.

While this hypothesis about the relationship between far analogies and creative concept
generation (i.e., far analogies lead to very novel concepts via “jumps” in conceptual
space) seems plausible and theoretically motivated, there is a critical empirical gap;
online studies of concept generation have not measured and analyzed far analogy use and
conceptual search patterns together. Prior studies showing a positive effect of far analo-
gies on novelty of generated concepts have typically done so in an “input-output” design,
where the conceptual outputs of designers who are given analogies as stimulation are
compared to those of designers who are not given analogies. The lack of “online” process
data still leaves open the possibility that the designers in the analogy groups may be
chaining together far analogies and generated concepts to incrementally arrive at novel
concepts in a way that is not recorded in their final recorded designs. Retrospective inter-
views of prominent innovators are of little help; potential issues surrounding incomplete-
ness, inaccuracy, and bias in retrospective reports are well documented (for a review, see
Schacter, 1999) and may be exacerbated when one is asked to retrospect for a
phenomenon about which one has (lay) theories, as may often be the case in creativity
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research (Perkins, 1981). This lack of detailed examinations of the interplay between far
analogies and concept generation is a major obstacle to theoretical progress in understanding
the precise ways in which analogies can impact creative concept generation. Taking an in
vivo approach, we address this gap by presenting detailed analyses of the online interplay
between far analogies and concept generation in a team of real-world professional designers.

2. Study 1

2.1. Overview

This study presents analyses of multiple hours of naturalistic brainstorming conversa-
tions of a real-world professional design team, involving a large number of analogies and
diverse set of subproblems. The design team consisted of 10 professionals from a range
of design-related disciplines, including electronics and business development, mechanical
engineering, business consulting, ergonomics and usability, and industrial design and pro-
ject management. The team was tasked with developing a new product concept for a
hand-held application of thermal printing technology for children. Within a larger taxon-
omy of design problems, ranging from routine (e.g., configuration/parametric design) to
non-routine (creating original products), where non-routine problems are perceived as
requiring more innovation (Chakrabarti, 2006; Dym, 1994; Gero, 2000), this problem is
clearly non-routine, with the goal being to design a completely novel product in a new
market, albeit leveraging an existing core technology. Thus, this design context is well
suited for observation of processes that might lead to more “radical” rather than “incre-
mental” innovation, where radical innovation has been more closely identified as coming
from very novel concepts (Dewar & Dutton, 1986).

These conversations unfolded over the course of two design team meetings, structured
as “brainstorms,” with a focus on concept generation; the first meeting lasted 1 h and
37 min and focused on mechanical design subproblems; the second meeting lasted 1 h
and 40 min and focused on electronics subproblems. The meetings were recorded with
four pre-placed cameras in the meeting room. Although no researcher was present at
either meeting, the designers were aware that they were being recorded, and that the data
would be used, along with recordings of design meetings at other companies, for a large
study by the Open University on “design meetings in practice.” The transcripts include
humor and outlandish statements, suggesting they were not very inhibited by the presence
of cameras.

Prior to the first meeting, the designers received a design brief that requested that they
think about problems related to the print head mounting design and pen format (e.g.,
keeping the print head level in spite of users’ wobbly arm movement, protecting the print
head from overheating and impact damage). To stimulate concept generation for these
problems, the designers were also asked to bring along products (or pictures of products)
that glide smoothly over contours.
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The purpose of Study 1 was to determine whether far analogies were associated with
conceptual jumps during concept generation. We operationalized jumps in terms of func-
tional distance, that is, the degree to which a given concept’s described functionality (i.e.,
a way of satisfying some design requirement vs. changes in color or manufacturing mate-
rial not directly tied to changed functionality) was different from a prior concept or set of
concepts. This operationalization reflects our focus on “radical” innovation, which in
engineering and technological contexts has been associated with changes in functionality;
for instance, Sood and Tellis (2005) argue that “platform innovation”—new functionality
based on novel working/scientific principles (e.g., from magnetism for reading/writing
data with floppy disks to laser optics for compact disks)—is where “breakthrough” or
“radical” innovation happens. With this operationalization, the working hypothesis to be
tested in Study 1 was the following: The functional distance of a proposed concept from
concepts recently considered will be reliably greater when preceded by far analogies
versus baseline, that is, when not preceded by far analogies.

Some discussion of validity and reliability is required given the deviations from a typi-
cal laboratory study along several dimensions. First, the data are narrow in the sense of
studying one team and only 10 individuals working on one larger design problem. But
the team worked on many different functional problems and generated a large number of
different analogies; thus, this dataset is broader in another sense than a typical laboratory
study that often examines the effect of one or two provided analogies on one given prob-
lem. Second, in terms of generalizability, it is not obvious that studying 100 undergradu-
ates with low prior knowledge in the given domain, little relevant disciplinary training,
and little incentive to do well produces outcomes of greater generalizability than the
study of seven motivated, knowledgeable, and richly trained adults from diverse back-
grounds working over multiple hours on many subproblems. Instead, it is likely that cog-
nitive science will benefit from encouraging just as many studies of cognition in the wild
as studies in the laboratory.

2.2. Methods

2.2.1. Segmentation
Analysis was conducted on the transcribed audio from the two meetings. Transcripts

were segmented into lines by utterances, such that each line contained a separate thought;
in this segmentation, a single sentence or speaker turn could span multiple lines. The seg-
mentation procedure resulted in a total of 4,594 lines, 2,382 in the first meeting and
2,212 in the second.

2.2.2. Coding analogy use
Coding of analogy use was conducted by a prior research team, whose findings have

been published in Ball and Christensen (2009); the second author, who has many years of
expertise in studying analogy in vivo, served as the primary coder, with a secondary
coder not affiliated with the research project recruited and trained to serve as a reliability
check. Analogies were coded at the sentence/turn level but tagged at the line level, mean-
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ing that analogies often spanned multiple lines. Sentences were coded as analogies any
time a designer referred to another source of knowledge and attempted to transfer con-
cepts from that source to the target domain. One Hundred and forty-four analogies were
found across the two transcripts (79 in the first and 65 in the second), with all designers
contributing analogies at approximately the same rate, commensurate with their level of
participation in the meetings overall (correlation between number of analogy and non-
analogy utterances across designers was high, r = .72). Inter-rater reliability, assessed by
comparing the primary and secondary coder’s codes for approximately 1 h worth of tran-
script, was acceptable, at (Cohen’s kappa) k = .77. This method of assessing inter-rater
reliability was also used for the remaining analogy codes.

Analogies were coded for both distance and purpose. Following previous in vivo stud-
ies of analogy (Ball & Christensen, 2009; Christensen & Schunn, 2007), analogies were
coded near versus far as follows: Near analogies involved mappings from sources that
related to tools, mechanisms, and processes associated with graphical production and
printing, while far analogies involved mappings from more far sources (see Tables 1 and
2). Of the 144 analogies found, 16% were coded as near, and 84% were coded as far.
Inter-rater reliability was very high, k = .99. Because near analogies were relatively rare
and because they are not the focus of prior hypotheses regarding impacts on concept gen-
eration, the analyses focus on the effects of the far analogies.

Following previous work (Ball & Christensen, 2009; Blanchette & Dunbar, 2001;
Christensen & Schunn, 2007), analogical purpose (i.e., the goal or function of the anal-
ogy) was coded at three levels, with a fourth level added as a theoretical contribution by
Ball and Christensen (2009; see Tables 3–6 for examples): (a) Problem identification—
noticing a possible problem in the emerging design, where the problem was taken from
an analogous source domain; (b) Concept generation—transferring possible design con-
cepts from the source domain to the target domain; (c) Explanation—using a concept
from the source domain to explain some aspect of the target domain to members of the
design team; and (d) Function-finding—active mapping of new functions to the design
form currently being developed (i.e., a thermal printing pen). Inter-rater reliability for this
coding scheme was also high, k = .85.

2.2.3. Coding concept generation
Because coding concept generation was more difficult, three coders, including the

author and two trained research assistants, identified generated concepts and the subprob-
lems they were intended to address. Similar to the coding of analogy use, concepts were

Table 1
Example of near analogy
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coded conceptually at the sentence/turn level, but tagged at the line level. Sentences/turns
were coded as concept proposals any time a designer described a proposal for how to
solve some design subproblem, where a design subproblem was defined as either (a)

Table 2
Example of far analogy

Table 3
Example of problem identification analogy

Table 4
Example of concept generation analogy

Table 5
Example of explanation analogy

Table 6
Example of function-finding analogy
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something the device (or a subsystem of it) has to do for the user (e.g., print, teach how
to write, keep user’s hands safe, make learning fun, make it harder to mess up, etc.) or
(b) something the device or subsystem has to do to support or enable other functions
(e.g., keep the print head level so that the print head mechanism can work). Defining con-
cepts at the subproblem level provided external validity to the coding scheme, given the
primary focus on concept generation, as concept generation in professional engineering
practice routinely occurs following decomposition of an overall design problem into sub-
problems which are then addressed iteratively, sometimes in tandem (Ball, Evans, Dennis,
& Ormerod, 1997; Ullman, 2002).

To avoid tagging of concept discussion lines as concept generation instances, only
utterances that explicitly participated in a description of how a concept is meant to work
were tagged as part of a concept; neither utterances evaluating concepts nor mere men-
tions of concepts (e.g., “that ‘sheath idea’ you mentioned earlier”) were tagged as part of
concepts unless they were embedded within a sentence or turn describing a concept.
Through exhaustive triple coding, identification of concepts utterances was done at a high
level of reliability; the intra-class correlation coefficient across the three coders was .88
(90% raw agreement).

To provide a further constraint on identification of concept utterances, coders also
simultaneously proposed a segmentation for a coherent group of concept utterances into
intact concepts and also proposed a pairing with one or more subproblems the concept
was intended to address. Segmentation and pairing of concept utterances was then final-
ized by discussion during consensus meetings involving all three coders. In total, 217
unique concepts proposed for 42 subproblems were identified. Examples of subproblems
included “keep the print head level,” “specific application concept of product,” “protect
the print head,” “power/energy saving,” “user interface for controlling print options,”
“prevent overheating,” “keep print head clean,” “form of media,” and “make device work
for left-handed users.”

Table 7 provides an example of a proposed design concept for the subproblem “keep
the print head level.” Due to the nature of the thermal printing technology, the thermal
print head had to interface with the printing media within a strict range of angles in order
for printing performance to be acceptable; however, the target market for the product
concept, that is, young children between the ages of 5 and 7, was judged as particularly
unlikely to hold pens and writing devices in stable ways. This subproblem was a major
one discussed by the designers, and 35 distinct concepts were proposed for addressing it.
The concept proposed in Table 7 was essentially a forcing function that would (via the

Table 7
Example of concept for “keep the print head level”
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shape of the device) force a particular way of holding the device that would insure appro-
priate angles of contact.

2.2.4. Constructing conceptual search spaces
To characterize the designers’ search patterns during concept generation, it was neces-

sary to first characterize the search spaces. As functional distance of concepts within the
search space was the focus, a functional similarity space for concepts within each sub-
problem space was constructed via pairwise comparison ratings of functional distance for
each concept in each subproblem space. That is, within each subproblem space (e.g.,
“keep the print head level”), all concepts generated by the designers were rated for func-
tional distance from all other concepts addressing the same subproblem. Two senior engi-
neering undergraduate students (in mechanical and electrical engineering, respectively—
both engineering subdisciplines highly relevant to the subproblems being solved by the
designers) conducted the pairwise ratings of functional distance. These students were
selected for their design experience and strong recommendations by engineering faculty
with whom they had taken coursework.

Functional distance between pairs of concepts was rated on a scale ranging from 1 to
5. Distance coding was conceptualized as a degree of overlap rating, with the following
anchor points: 1 = very similar (very substantial overlap, only trivial differences),
2 = somewhat similar (substantial overlap, but some non-trivial differences), 3 = some-
what different (some overlap, some differences), 4 = (little overlap, numerous differ-
ences), and 5 = radically different (very minimal/trivial overlap). Examples of 1 and 5
rated pairs are given in Table 8 (all concepts from the “keep the print head level” sub-
problem space).

The coding procedure was as follows. For each subproblem space, the two coders
together first looked through the list of proposed concepts in the space and agreed upon
an initial set of important points of contrast for comparing concepts. For example, for

Table 8
Example of concept pair ratings

Concept 1 Concept 2 Distance

No. 28: Laser mechanisms
detect angle of contact and
provide feedback to user

No. 29: Project multiple light
points from device that
converge when print head is
at correct angle

1

No. 14: Device is toy with one or
more wheels

No. 16: Put three ball bearings
around print head to interface
with media

1

No. 8: Use a different type of
print head with more favorable
angle tolerance

No. 86: Have a switch that
controls print head action
based on angular movement

5

No. 32: Add a dedicated feedback
display that goes on user’s wrist
to give feedback on device angle

No. 84: Add disc around print
head that restricts angle of
contact with media

5
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concepts proposed for the subproblem “keep the print head level,” one point of contrast
was “user versus device-centric approach” (e.g., user centric would be “give feedback to
user and user adjusts accordingly,” vs. “device has suspension system that adjusts for user
action automatically”). Next, the coders independently generated functional distance rat-
ings for all pairwise comparisons within the subproblem space, using the points of con-
trast as a guide for their judgments. The final step involved computations of inter-rater
agreement and discussion of disagreements greater than 1-point difference; differences of
1 point were averaged to produce a final distance rating.

It should be noted that not all concepts entered into the analysis. Because the current
analysis was focused on movement within a conceptual space, subproblems with less than
three proposed concepts were excluded. The final set of concepts for analysis included
135 proposed concepts for nine major subproblems (see Table 9). Inter-rater reliability
for this measure was excellent, with an intra-class correlation coefficient of .94 for ratings
in the final set of concepts.

2.2.5. Constructing independent and dependent variables
2.2.5.1. Dependent variables: The primary dependent variable was distance from
prior concepts. Two prior concept reference points were employed: (a) MIN FROM LAST 5—
minimum distance from the prior five concepts and (b) JUST PRIOR—distance from the JUST

PRIOR concept. The two reference points provide complementary views of the designers’
patterns of conceptual search: MIN FROM LAST 5 provided a stricter measure of jumps
through the conceptual space, as a given concept would have a high “distance from refer-
ence point” value, if it was substantially functionally different from all of the five con-
cepts that immediately preceded it; JUST PRIOR provided a more circumscribed measure of
jumps but one that might capture more localized movement in the conceptual space. For
example, suppose the designers generated five concepts consecutively (C1, C2, C3, C4,
and C5). C5 would receive a high “distance from reference point” value if it was substan-
tially different from C4, even if it was functionally similar to C1, C2, and C3.

Although the ratings were technically obtained in an ordinal fashion, they are meant to
approximate an interval scale, as is the case with the majority of Likert-type scales,

Table 9
Subproblems by number of concepts

Subproblem No. Concepts

Keep the print head level 35
Specific application concept of product 35
Protect the print head 29
Acquiring print patterns 9
Powering the device 7
User interface for controlling print options 6
Varying print options available to user 6
Insure print head only fires when on media 5
Maintain appropriate surface area of contact between print head and media 3
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which are frequently analyzed with ANOVAs, and results are most often very consistent
with complementary analyses using non-parametric models. More important, we have
direct evidence from our data that our distance measure behaves in a way that approxi-
mates an interval scale; the ratings for the three largest subproblem spaces (i.e., “keep the
print head level,” “specific application concept of product,” and “protect the print head”)
closely approximate the triangle inequality (i.e., for any triangle, the sum of the lengths
of any two sides must be greater than the length of the remaining side), an important
property that must hold for distances in Euclidean space (which are interval scale; Beals,
Krantz, & Tversky, 1968). Less than 1% of the triangles in the first two subproblem
spaces, and less than 4% of triangles in the remaining subproblem space violate this
inequality (most violations consist of the remaining side being within one point of the
sum of the other two sides). For these reasons, we analyze our dependent variables as
interval scales.

2.2.5.2. Independent variables: The primary independent variable was an ANALOGY

BEFORE measure, which had two levels: (a) FAR ANALOGY, for concepts preceded by analo-
gies that were both far and concept generating (function-finding analogies were included
in this definition, as they served the purpose of generating new functional elements for a
concept) and (b) baseline, for concepts not preceded by any far analogies (as defined in
[a]). To thoroughly explore the space of possibilities for the effects of analogy, ANALOGY

BEFORE was created at two different time windows: 10 and 5 lines prior to the concept
onset. Number of lines rather than time per se was chosen as the segmentation unit of
analysis because the focus was on information exchange and cognitive processes, which
could happen at varying rates with respect to the passage of time per se. This range of
time window sizes reflected our focus on relatively immediate effects of far analogies on
concept generation.

The process of creating ANALOGY BEFORE for each of the time windows was identical
and was as follows. For each concept, its initial onset in the transcript was identified.
Next, the n lines prior to the onset were scanned to determine whether any of those lines
contained at least part of an analogy/analogies, keeping separate track of distance and
purpose of these analogy/analogies. With this information, concepts were classified into
either the baseline or FAR ANALOGY groups; if a concept was preceded by an analogy that
was not both far and concept generating, it was discarded. This allowed for a clean esti-
mation of the effects of far concept-generating analogies on the conceptual search pro-
cess. Hereafter, the term “far analogies” will be used as shorthand to refer to “far
analogies used for concept generation.” The number of concepts in each ANALOGY BEFORE

level by reference point is shown in Table 10.
It should be noted that some concepts were preceded by multiple analogies. In these

cases, the concept in question was classified based on the predominant distance and pur-
pose of the analogies; more specifically, a concept was assigned to the FAR ANALOGY level
if and only if the majority of the analogies (i.e., more than half) were far and either con-
cept generating or function finding. In addition, given the naturalistic character of the
data, the comparison to baseline is not to a standard “control” no input condition, but
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more precisely against functional distance of search when the designers were not using
far analogies; other concept-generating strategies were more than likely being employed,
such as reasoning from first principles and mutation of existing concepts (Gero & Maher,
1991; Ullman, 2002). That is, the study evaluates whether far analogies are particularly
powerful, as the literature argues, rather than simply evaluating whether it has any effect
at all.

2.3. Results

Four separate one-way ANOVAs were run for the two distance from reference point-
dependent variables, two using MIN FROM LAST 5 as the dependent variable: (a) MIN FROM

LAST 5 by ANALOGY BEFORE (10-line window) and (b) MIN FROM LAST 5 by ANALOGY BEFORE

(5-line window); and two with JUST PRIOR as the dependent variable: (c) JUST PRIOR by
ANALOGY BEFORE (10-line window) and (d) JUST PRIOR by ANALOGY BEFORE (5-line window).
Distance from reference point means for each ANALOGY BEFORE level, for both 10-line and
5-line windows, are shown in Table 11.

2.3.1. MIN FROM LAST 5
2.3.1.1. 10-line window: There was no statistically significant main effect of ANALOGY

BEFORE, F(1, 95) = 0.36, p = .55. Concepts were neither more nor less distant from their
last five predecessors when preceded in the last 10 lines by far analogies versus baseline
conditions, Cohen’s d = !0.06 (95% confidence interval = !0.46 to 0.24).

2.3.1.2. 5-line window: There was no statistically significant main effect of ANALOGY

BEFORE, F(1, 90) = 0.08, p = .78. Concepts were neither more nor less distant from their

Table 10
Number of concepts in each ANALOGY BEFORE condition at 10-line and 5-line windows at two different refer-
ence points for distance from prior concepts

Reference point

10-Line Window 5-Line Window

Baseline FAR ANALOGY Baseline FAR ANALOGY

MIN FROM LAST 5 59 33 72 25
JUST PRIOR 81 38 95 30

Table 11
Mean (and standard error) functional distance for each ANALOGY BEFORE level at 10-line and 5-line windows,
with two different reference points for distance from prior concepts

Reference point

10-line window 5-line window

Baseline FAR ANALOGY Baseline FAR ANALOGY

MIN FROM LAST 2.1 (0.2) 2.0 (0.2) 2.1 (0.1) 1.9 (0.2)
JUST PRIOR 3.3 (0.2) 2.6 (0.2) 3.2 (0.1) 2.6 (0.2)
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last five predecessors when preceded in the last five lines by far analogies versus baseline
conditions, Cohen’s d = !0.14 (95% confidence interval = !0.61 to 0.13).

2.3.2. Just prior
2.3.2.1. 10-line window: There was a statistically significant main effect of ANALOGY

BEFORE measure, F(1, 117) = 6.47, p = .01, g2 = .05. However, the nature of the effect
was contrary to the initial hypothesis; concepts were less distant from their immediate
predecessors when preceded in the last 10 lines by far analogies versus baseline condi-
tions, Cohen’s d = !0.50 (95% confidence interval = !0.90 to !0.21).

2.3.2.2. 5-line window: There was a statistically significant main effect of ANALOGY

BEFORE, F(1, 123) = 4.52, p = .04, g2 = .04. As with the 10-line window analysis, con-
cepts were less functionally distant from their immediate predecessors when preceded in
the last five lines by far analogies versus baseline conditions, Cohen’s d = !0.45 (95%
confidence interval = !0.90 to !0.18).

Fig. 1 illustrates the nature of the effect found in the ANOVAs with JUST PRIOR as the
dependent variable. Each stacked bar presents percentage of concepts at each functional
distance level in the two ANALOGY BEFORE levels (defined at the 5-line window). Attending
first to the baseline bar, it is clear that jumps (distance from JUST PRIOR >3; the darker
gray regions) are a common search step when designers were not using far analogies for
concept generation, accounting for approximately half of all such concepts. Attending
next to the FAR ANALOGY bar, the contrast with the baseline concepts in terms of relative
distributions of search steps is clear; far analogies are followed by more hops (distance
from JUST PRIOR ≤2; 50% of concepts) compared to baseline conditions (27% are hops).
This pattern suggests that the biasing toward hops from immediate predecessors is not
spurious (e.g., driven by a few outlier FAR ANALOGY-concept cases), but rather may be
indicative of a general pattern of FAR ANALOGY’s impact on creative concept generation, at
least for these expert designers.

Fig. 1. Percentage of concepts at 5 distance from JUST PRIOR cutoff points, presented for baseline and FAR

ANALOGY concepts, defined at the 5-line window.
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2.4. Discussion

Overall, Study 1 found no support for the hypothesis that far analogies would lead to
more jumps than hops, compared to baseline conditions; specifically, the analyses showed
that the functional distance of proposed concepts from their immediate predecessors was
not reliably greater when preceded by far analogies versus baseline. This result was
robust across a range of time windows and measures. In fact, not only did functional dis-
tance from predecessors appear to be equivalent in the FAR ANALOGY versus baseline cases;
when considering the distance of concepts from their immediate predecessors, FAR ANAL-

OGY use was associated with conceptual moves that were more incremental than concept
generation using other thought processes.

3. Study 2

Study 1’s surprising counter-hypothesis findings raise questions surrounding the overall
impact of far analogies on concept generation. The suppression effect on functional dis-
tance might be seen as evidence of fixation, in the sense of a decrease in the ability to
generate concepts that are significantly different from ones already considered (Jansson &
Smith, 1991; Smith, Ward, & Schumacher, 1993). This sort of fixation has been corre-
lated with a decrease in the fluency of concept generation, another phenomenon that has
been termed “fixation” due to the hypothesized importance of fluency for innovative
outcomes (Guilford, 1950; Hennessey & Amabile, 2010; Runco, 2004; Shah, Vargas-
Hernandez, & Smith, 2003; Terwiesch & Ulrich, 2009); for instance, increased fixation to
example features during concept generation was associated with decreased levels of flu-
ency (Chan et al., 2011), and the fluent generation of numerous concepts is empirically
associated with the rate of generating novel, highly innovative concepts (Simonton,
1997). Thus, it is reasonable to ask whether the far analogies would also decrease fluency
of concept generation.

Whether or not the far analogies decrease concept generation fluency has implications
for the interpretation of Study 1’s findings. If FAR ANALOGY use was associated with both
suppressed functional distance of search and reduced concept generation fluency, it might
be reasonable to suppose that the far analogies in this context were not productive (e.g.,
they were “fixating”). By contrast, if Study 2 did not yield evidence of suppression of
concept generation fluency, Study 1’s findings might be indicative not of the impact of
unproductive far analogies but rather of a productive use of far analogies, focused on
local idea exploration.

3.1. Overview

Given the in vivo and temporal nature of our data, we elected to examine the relation-
ship between far analogies and concept generation fluency in terms of changes in the
probability of generating concepts. Specifically, Study 2 examined whether FAR ANALOGY
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use was associated with a lower probability of concept generation relative to baseline lev-
els. To address this question, a time-lagged logistic regression was employed; time
lagged, because this analysis would estimate the change in concept generation probability
at time t and t + 1 based on patterns of FAR ANALOGY use at time t, and logistic because
the outcome variable was binary (i.e., did a designer generate a concept or not). This
analysis assumed that (a) there was some baseline probability of a concept being gener-
ated in a given time slice and (b) a decrease in this probability as a function of the pres-
ence of a FAR ANALOGY in the current or previous time slice would suggest that the far
analogies were reducing fluency of concept generation.

3.2. Methods

3.2.1. Creating blocks
The first step in the analysis was to segment the transcript into blocks for the time-

lagged analysis. As similar trends were seen with block sizes of 10 and 5 lines in Study
1, and concepts were less rare than analogies, we selected a block size of five lines for
this analysis to achieve a more favorable tradeoff between time window precision (esti-
mating more immediate effects of FAR ANALOGY) and noise due to attrition (smaller time
window leads to more attrition of measured phenomena).

Sets of five consecutive lines were chunked to create separate blocks. When a coherent
cluster of analogy utterances occurred that contained at least one far concept-generating
analogy (here, as with Study 1, this included both concept generation and function-finding
analogies), it was marked as its own block, beginning from the start to the end of the
analogy cluster. Subsequent sets of five consecutive lines continued to be clustered into
separate blocks, until the next cluster of FAR ANALOGY utterances began (see Fig. 2 for a
visual summary of the block creation strategy). Analogy onsets and offsets were used as
boundary markers for blocks because the focus is on estimating the effects of analogy,
which should be most directly shown when closely time locked to analogies. Because of

Fig. 2. Analogy-centered block creation strategy and time lags.
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this analogy-centered block creation strategy, blocks immediately preceding analogy
blocks were sometimes (fewer than 6% of blocks) less than five lines long.

This block creation strategy resulted in 97 analogy blocks and 843 non-analogy 5-line
blocks. The reasons for the discrepancy between the number of analogy blocks and the
number of unique analogies identified in the transcript (i.e., 147) are that (a) analogy
clusters that did not contain far concept-generating analogies were treated as “normal”
blocks, (b) analogies sometimes re-entered the conversation at later times, and (c) some
analogy clusters were composed of more than one analogy (if they occurred in immediate
succession). Analogy block lengths ranged from 1 line to 28 lines (M = 5.2, SD = 4.9),
with most (88%) analogy blocks being 10 lines or less.

3.2.2. Independent and dependent variables
3.2.2.1. Independent variable: Similar to Study 1, the independent variable was FAR

ANALOGY and had two levels: yes, if the block contained a FAR ANALOGY, and no, if it did
not. Thus, as in Study 1, concept generation rates associated with far analogies were not
compared with a traditional baseline, but rather with conditions in which other cognitive
processes were being employed.

3.2.2.2. Dependent variable: The dependent variable, NEW CONCEPT, was a binary indica-
tor for whether or not a NEW CONCEPT onset was present in the block (yes or no) regardless
of functional distance to prior concepts; that is, a block was coded as “concept = yes” if
and only if it contained an onset of a concept that was not mentioned in previous blocks.
This ensured that the analysis would more cleanly reflect effects of far analogies on the
generation (rather than elaboration) of concepts.

3.3. Results

Two separate time-lagged logistic regression models were estimated for lag 0 and lag
1 relationships between the FAR ANALOGY and NEW CONCEPT measures. The lag 0 model
estimated the co-occurrence relationship between FAR ANALOGY at time t and NEW CONCEPT

at time t; the lag 1 model estimated the relationship between FAR ANALOGY at time t and
NEW CONCEPT at time t + 1 (i.e., in the next block; see Fig. 2 for a visual depiction of each
time lag). Using only lags 0 and 1 focuses on immediate consequences that best fit the
hypotheses under test and reduce the probability of finding spurious correlations from
examining multiple lags.

The odds ratios for each lag are summarized in Table 12. The models did not show any
decrease in concept generation as a function of FAR ANALOGY for either lag (nor did analy-
ses using larger or smaller window sizes); on the contrary, FAR ANALOGY use was reliably
associated with an increase in concept generation rate relative to baseline conditions,
that is, when designers were engaging in processes other than using far analogies to gener-
ate concepts. For lag 0, the overall model was statistically significant, v2 (1,
N = 938) = 8.02, p = .00, Negelkerke R2 = .013, and the coefficient for the FAR ANALOGY

predictor, b = .69, odds ratio = 1.99, indicated that FAR ANALOGY use was associated with
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an approximately 100% increase in the odds of a concept being generated in the same
block, relative to other processes the designer might otherwise be engaged in. This coeffi-
cient was statistically significant, Wald v2 (1) = 8.59, p = .00.

The lag 1 model estimates were very similar. The overall model was statistically
significant, v2 (1, N = 938) = 6.63, p = .01, Negelkerke R2 = .011, and the estimated
coefficient for FAR ANALOGY, b = .63, odds ratio = 1.88, indicated that FAR ANALOGY use
was associated with an approximately 88% increase in the odds of a concept being gener-
ated in the next block, relative to other processes the designer might otherwise be
engaged in. This coefficient was statistically significant, Wald v2 (1) = 7.09, p = .00.

3.4. Discussion

Taken together, Study 2’s results are not consistent with the hypothesis that the far
analogies decreased fluency of concept generation. On the contrary, the positive odds
ratios from the models indicated that the far analogies increased fluency of concept gener-
ation, even when compared to other concept-generating processes the designers might
have been engaged in. These results suggest that Study 1’s findings are not indicative of
the impact of only unproductive far analogies, but they might be suggestive of far analo-
gies spurring more functionally local conceptual search.

4. Study 3

In Study 3, we sought to provide additional tests of the potential relationship between
FAR ANALOGY use and local conceptual search. One potential interpretation of the suppres-
sion of distance observed in Study 1, in tandem with the increased fluency found in Study
2, could be that the far analogies were being used to more deeply explore certain regions
of the design space. Rietzschel and colleagues (Rietzschel, Nijstad, & Stroebe, 2007;
Rietzschel, De Dreu, & Nijstad, 2009) have argued that novel concepts can often come
from deep exploration within conceptual categories; because there are only a limited
number of “conventional” concepts within categories, and initial forays into categories
will tend to be superficial and be biased toward conventional ideas, extended exploration
within categories can allow problem solvers to reach highly novel concepts within those
categories. This conjecture is consistent with the findings of “extended effort” effects,
where within an idea generation session, ideas generated later tend to be more novel than

Table 12
Odds ratios by lag type for logistic regressions of NEW CONCEPT on FAR ANALOGY

Odds ratio

95% CI

Lower Limit Upper Limit

Lag 0 1.99** 1.26 3.15
Lag 1 1.88** 1.18 2.98

Note. **Denotes p < .01.
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ideas generated earlier (Basadur & Thompson, 1986; Beaty & Silvia, 2012; Parnes,
1961). In the domain of design, Heylighen, Deisz, and Verstijnen (2007) showed that
recombination and restructuring of elements within concepts for a design task (at the
expense of lowering overall number of unique concepts) was correlated with more origi-
nal concepts being produced.

It is possible that the designers were using the far analogies to generate variations on
concepts that were different enough that they could continue to explore the design space
more thoroughly. From an analogical retrieval perspective, too, one might expect to see
such an effect of FAR ANALOGY use (i.e., generating more hops than jumps) in the context
of relatively functionally coherent conceptual exploration; analogical comparison of two
or more isomorphic or structurally very similar knowledge/solutions (as is the case with
our data) can aid in the formation of an abstract schema through structural alignment
(Gentner, Loewenstein, & Thompson, 2003; Gick & Holyoak, 1983; Loewenstein,
Thompson, & Gentner, 1999), which can serve as a stronger base for retrieval of superfi-
cially dissimilar but structurally similar analogs from memory (Gentner, Loewenstein,
Thompson, & Forbus, 2009; Kurtz & Loewenstein, 2007). However, this mechanism for
increasing the probability of retrieving far analogies may also strongly favor retrieval of
functionally very similar solutions, as structural similarity is the primary retrieval cue.
Thus, observing a relatively coherent pattern of conceptual exploration JUST PRIOR to far
analogies may help to explain why far analogies might be associated with incremental
conceptual moves rather than jumps; far analogies may be more likely to be retrieved
during an episode of exploration of variations on a common functional theme, and these
far analogies are likely to be also functionally similar to the concepts being considered in
that episode due to structural alignment.

4.1. Methods

To explore this potential explanation of the association between far analogies and
reduced functional distance of search, we examined the concepts immediately preceding
far analogy-to-concept pairs (i.e., far concept-generating or function-finding analogies),
focusing on the distance of each concept from its immediate predecessor (i.e., its JUST

PRIOR value, derived from Study 1). In building this sample of concepts, we screened out
concepts that were not in the same subproblem space as the concept following the anal-
ogy, and concepts with predecessors in a different subproblem space. The final sample
consisted of 57 concepts. The research question pursued was whether these concepts
would, like the concepts preceded by far analogies, also be more likely to be functionally
similar to their immediate predecessors, compared to baseline conditions. We used the 81
baseline concepts and 95 baseline concepts from Study 1 as the baseline benchmarks.

4.2. Results and discussion

Forty-one of the 57 concepts (72%) were themselves “hops” (i.e., distance of less than
3) from their immediate predecessors, although with far fewer “hops” among that set than
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in the set of concepts following far analogies (see Fig. 3 for a visual comparison of the
distributions for functional distance from JUST PRIOR values for concepts in baseline condi-
tions, preceded by far analogies, and preceding far analogies).

In statistical terms, the concepts that immediately preceded the FAR ANALOGY-concept
pairs were less distant from their immediate predecessors compared to both 10-line win-
dow baseline concepts, Cohen’s d = !0.38 (95% CI = !0.64 to !0.09), and 5-line win-
dow baseline concepts, Cohen’s d = !0.30 (95% CI = !0.56 to !0.03). The former
contrast was statistically significant at the conventional a = .05 level using an indepen-
dent samples t test, t(136) = 2.17, p = .03, while the latter contrast was marginally signif-
icant using the same a level with an independent samples t test, t(150) = 1.78, p = .08.
These data suggest that the far analogies were often situated in a stream of relatively
coherent conceptual exploration, where successive concepts (at least three in a row, two
before the analogy, and one after) were variations of each other within a region of the
design space.

5. General discussion

5.1. Summary and interpretation of findings

In summary, three studies were conducted to unpack in detail the effects of FAR ANAL-

OGY use on conceptual search patterns in the naturalistic conversations of a real-world
professional design team. Study 1 showed that the use of far concept-generating analogies
was not associated with increased functional distance of proposed concepts from their
predecessors. In fact, there was evidence that FAR ANALOGY use was temporally associated
with decreased functional distance of search relative to immediate predecessors. Study 2
examined whether this effect was associated with an overall fixating effect, and showed
that rather than decreasing the fluency of concept generation, far concept-generating anal-
ogies were associated with increased fluency, both during and after their use. This result

Fig. 3. Percentage of concepts at 5 distance from JUST PRIOR cutoff points, presented for baseline concepts,
FAR ANALOGY concepts (defined at the 5-line window), and concepts immediately preceding far analogies.
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helped to clarify the nature of FAR ANALOGY’s impact on concept generation; rather than
generally slowing down concept generation, the far analogies appeared to be used to keep
the flow of concepts moving, with a special emphasis on generating functionally incre-
mental steps in the conceptual space. Finally, in Study 3, we conducted an analysis of
conceptual search patterns JUST PRIOR to FAR ANALOGY-concept pairs and found that con-
cepts preceding FAR ANALOGY-concept pairs were also more likely to be functionally more
similar to their predecessors (compared to baseline concepts). Altogether, the three studies
suggest that, contrary to some previous accounts of creativity, far analogies may not lead
to novel concepts via jumps in conceptual space; rather, far analogies may be embedded
in and supportive of coherent streams of conceptual exploration, perhaps in support of a
search for functionally novel concepts via deep search. To ground these quantitative
observations and illustrate the effects found in the three studies, here we present two
extracts from the transcripts that illustrate conceptual explorations involving far analo-
gies.

In Table 13, the designers are searching for ways to protect the print head from being
damaged by unexpected contact when the device is not printing, exploring a space of pos-
sible retractable covers for the print head. Two far analogies are employed to generate
two distinct variations on this concept: Concept 61 involves a mechanism similar to a
video tape flap with a rigid flap that opens to release the print head for use, while Con-
cept 62 retains the core concept of a retractable cover, but using a slightly different
mechanism, similar to a rolling garage door. Here, we see how both analogies were a
source of concepts, and how the FAR ANALOGY to the garage door provided a way to
further explore the space of retractable covers.

In Table 14, the designers are searching for concepts that address the subproblem of
maintaining the optimal angle of contact between the print head and the media, given that
the target users are young children who are unlikely to hold the printing device still to

Table 13
Example of progression in conceptual exploration involving FAR ANALOGY
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achieve that angle of contact without some help. The designer proposes Concept 24,
which involves designing the shape of the device such that it forces the user to hold it in
the “correct” way (i.e., in a way that preserves the optimum angle of contact between the
print head and the media). Concept 25 takes the idea of feedback in a slightly different
direction and proposes giving visual (as opposed to simply tactile) feedback to the user to
guide interactions. This delineates a region of the design space with the general approach
of providing perceptible feedback and sets the stage for a FAR ANALOGY to laser levelers,
used among DIY enthusiasts to make sure they are following appropriate angles for vari-
ous construction and re-pair tasks (e.g., laying tiles, constructing shelves, etc.). Again, as
in Table 13, this analogy was a direct source of Concept 28, which spurred further explo-
ration within that region of the design space by changing the way the feedback would be
provided to the user, while retaining key functional features from Concept 25.

Together, these extracts illustrate how far analogies were a significant source of con-
cepts that tended to be embedded in and supportive of continued explorations in particu-
lar functional regions of the design space, rather than large functional jumps.

5.2. Caveats

Some caveats should be mentioned before discussing the broader implications of this
work. First, the present empirical approach involved a tradeoff between external and
internal validity. While the naturalistic character of the data and the fact that the design-
ers are real-world professionals lend external validity to the findings, it should be noted
that the findings are correlational in nature, and tight experimental control of potential
confounding variables was not possible. Nevertheless, our data have several mitigating
factors that lend strength to the internal validity of the findings, namely the high

Table 14
Another example of progression in conceptual exploration involving FAR ANALOGY

Note. aConcept numbers not contiguous because concepts relating to other subproblems were discussed in
between Concept 25 and the analogy.
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reliability of the measures (e.g., k > .8, ICC > .9 for analogy distance and concept func-
tional distance, respectively), the descriptive analysis of the frequency distributions of
functional distance of concepts addressed by far analogies versus not, the analysis of the
analogy-concept extracts from the transcript in the discussion, and the examination of
temporal order.

A related caveat has to do with the tradeoff between depth and breadth; the data col-
lection, coding, and analytic methods employed in the present work, while affording
highly detailed looks at the temporal interplay between analogy use and concept genera-
tion, are highly resource intensive, making comparisons across multiple expert datasets
difficult. From one perspective, the sample size of the three studies was essentially
N = 1, given that only one team was studied. Nevertheless, the high external validity of
the data does provide some initial confidence that the observed interplay between far
analogies and conceptual search patterns is as likely to generalize to other real-world con-
texts as studies conducted in the laboratory. Further, the team worked on many different
subproblems, and thus the observed pattern is unlikely to be driven by characteristics of a
single problem; many laboratory studies employ many participants, but all participants
often solve a particular problem.

The restriction to one team also precludes our ability to relate the observed patterns
directly to final creative outcomes; thus, only descriptive (not prescriptive) inferences are
supported by our data. Our data are silent on whether the patterns of relationships
between far analogies and conceptual search patterns are low-performance or high-perfor-
mance creative concept generation strategies. Yet the designers were experienced, profes-
sional designers at a firm known for innovation, suggesting that the patterns observed
may represent an expert concept generation strategy involving far analogies.

Finally, some might be concerned about our reliance on verbal reports as data. Such
methods can suffer from loss of signal; however, the critical question is whether our loss
of signal is systematic in a way that undermines our analyses and inferences. For
instance, our choice to measure verbally expressed analogy precludes measurement of
“implicit” analogy (i.e., mappings that occur below/without conscious awareness); how-
ever, given that most theories of analogy assume the central mapping process occurs in
working memory, we do not believe that these implicit mappings are actually analogy at
work (see, e.g., Schunn & Dunbar, 1996). With respect to explicit but not verbalized
analogies, we believe the interactive nature of the design meetings helps to mitigate con-
cerns about missing such analogies. Transcripts of collaborative discussions can be
thought of as approximating the level of explication of thought in individual verbal proto-
cols, as the collaborators have an incentive to provide common ground for collaborative
problem solving, particularly given the multidisciplinary context. There could also be a
systematic loss of signal biasing against truly far analogies due to social inhibition; how-
ever, we believe this is not present in our data, as the designers were given standard
brainstorming instructions to encourage wild ideas, had been working together for many
years, and many outlandish things were said in the meeting (e.g., evil emperor from Star
Wars with lightning bolts shooting out of nose, joking that they should teach left-handed
children to be right handed by hitting them with a cane). For these reasons, we accept
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that there is some loss of signal in our analogy measure, but we do not believe that there
is significant or systematic loss of signal that precludes our ability to draw useful infer-
ences from the data.

5.3. Future directions

We now note some key future directions of this work. First, there is the issue of gener-
alizability across design situations. It is possible that FAR ANALOGY-generated jumps may
only occur in certain design situations. Perkins (1994, 1997) has described a potential
“isolation problem” in creative problem spaces, where innovative concepts are bounded
in the space by wildernesses of no promise. In these situations, incremental search may
lead to an impasse, as there is no incremental path into the location of the innovative
concept that avoids going through highly unpromising options. It may be that large jumps
into these isolated regions of promise might be facilitated by highly functionally distant
analogies, perhaps sparked by external stimulations. This notion is consistent with the lit-
erature on incubation and “prepared mind” effects, where creative problem solvers over-
come impasses in their problem solving by unexpectedly encountering potentially
relevant ideas in their environment after having set their problem aside (Christensen &
Schunn, 2005; Seifert et al., 1995; Tseng et al., 2008). These ideas suggest that impasses
may be a prerequisite for observing jumps supported by analogy.

The data we have do not allow us to speak directly to this issue, as we did not mea-
sure the occurrence of impasses; we did have an indirect measure of impasses (i.e.,
expressed uncertainty in their speech; for more information on the measure, see Ball &
Christensen, 2009) but found no measurable difference in uncertainty levels between
problems addressed by far analogies versus not. It is possible that the lack of increased
uncertainty for problems addressed by analogy indicates a lack of impasses and therefore
reduced likelihood of or need for large jumps; however, jumps did occur for problems
not addressed by analogy, which had comparable levels of uncertainty (or lack thereof).
Thus, our data are inconclusive regarding any potential variations in the relationship
between far analogies and conceptual jumps as a function of impasses. Follow-up work
may explore this issue further by creating impasse-likely and impasse-unlikely design sit-
uations and comparing the impact of far analogies on conceptual search patterns across
those settings.

Further, there is the issue of self-generated nature of the far analogies in this data; that
is, with just a few exceptions, most of the analogies were retrieved from the designers’
memories. The few analogies that might have been retrieved from external sources were
those generated prior to the first meeting; a meeting brief was sent around to the team
prior to the first meeting, advising the designers of the major issues to be discussed in the
two meetings (e.g., the angle problem, protecting the print head), and instructing the team
members to bring to the meeting products or designs that have to glide smoothly over
contours, to help kick-start concept generation for the angle problem. The primarily self-
generated character of the analogies stands in contrast to the externally given analogies in
many of the prior studies of analogy in design. In light of this, one possible explanation
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of the local/incremental character of conceptual search supported by FAR ANALOGY might
be that many of the far analogies were insufficiently “far” from previously considered
concepts.

That is, notwithstanding the documented capacity of people to retrieve far analogies
from long-term memory in naturalistic settings (Blanchette & Dunbar, 2000; Dunbar,
2001), it is possible that, given the computational constraints of analogy (e.g., preferring
systematic matches, one-to-one mappings; Gentner, 1983), the strong influence of surface
similarity on retrieval (Forbus, Gentner, & Law, 1994; Gentner & Landers, 1985; Gent-
ner, Rattermann, & Forbus, 1993; Keane, 1987; Rattermann & Gentner, 1987; Reeves &
Weisberg, 1994; Ross, 1987), and the associative character of memory (Collins & Loftus,
1975; Raaijmakers & Shiffrin, 1981), designers might not be able to retrieve from mem-
ory other concepts that solve similar subproblems in very different ways, especially if
these concepts are embedded within designs or products with very different overall func-
tionality. Further, as noted earlier, most of the far concept-generating analogies appeared
to have been retrieved within an episode of relatively coherent functional exploration,
providing further constraints on the range of functional distance the designers could
explore using analogical retrieval.

Different effects of analogy on conceptual search patterns might be observed with
externally provided analogous sources that are highly distant functionally. Perhaps very
far (even bordering on “random”) analogical stimuli from external sources are needed to
truly support large conceptual jumps into novel search space territory. It is worth men-
tioning, however, that the current empirical support for the benefits of “random” analo-
gies is mixed at best (for a recent review, see Christensen & Schunn, 2009a). There are
also potentially important interactions between problem space structure and analogical
source. It may be that far analogies retrieved from memory generally support increased
fluency of search but enable jumps out of local maxima only in impasse situations, and
perhaps only if they are “far enough” (e.g., from “random” external sources). Future work
should explore these novel hypotheses.

5.4. Broader implications

We conclude by noting some broader implications of the work for understanding inno-
vation in general from a cognitive standpoint. One potential insight might be an elevation
of the importance of incremental/iterative development of concepts as a pathway to novel
concepts. Insofar as far analogies in the concept generation process are associated with
more innovative outcomes, we might infer from the present data that incremental accu-
mulation of many small insights is at least as likely to lead to innovative outcomes as
direct generation of very novel concepts. The history of innovation contains accounts of
such “incremental” accumulations that culminated in innovative breakthroughs; one strik-
ing example is the invention of the steam engine by James Watt, which was powered in
large part by a crucial addition of a steam condenser (for increased efficiency of the heat-
ing/cooling mechanism of the metal cylinder in the steam engine) to Newcomen’s “atmo-
spheric engine”—this relatively small addition proved to be such a difference maker that
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James Watt is often credited for the invention of the steam engine. Detailed in vivo and
cognitive-historical accounts of innovation have also highlighted this very incremental
pathway to highly innovative outcomes (Carlson & Gorman, 1990; Gorman, 1997; Weis-
berg, 2009).

Another potential implication might be a rethinking of the impact of analogical dis-
tance. If the cognitive mechanisms by which far analogies inspire innovation are shown
to be very similar (or identical to) the inspirational mechanisms of near analogies (e.g.,
increased fluency), this might provide some motivation to question the fundamental dis-
tinction between far and near analogies in terms of their potential for supporting innova-
tion. It may be that it is not analogical distance from one’s problem per se that matters,
as Perkins (1983) and Weisberg (2009) argue, but other considerations, such as the simi-
larity of the analogical source to one’s currently considered concepts, or the relationship
of the analogy to other considered analogies (e.g., conceptual diversity of sources consid-
ered; Mumford, Baughman, & Sager, 2003; Taylor & Greve, 2006). Certainly, much
more theoretical and empirical work is needed to evaluate whether this theoretical ques-
tioning is warranted.

Overall, the present work highlights the important and complementary role of detailed
in vivo studies of cognition for a complete cognitive science of innovation; just as proto-
col analyses of online problem solving yielded invaluable insights that constrained theo-
ries of problem solving and aided in suggesting hypotheses for and guiding
interpretations of experimental studies, so in vivo studies of the innovation process can
continue to complement experimental data from input–output studies and inform more
complete theories of the cognitive processes that lead to innovation.
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On the Benefits and Pitfalls of
Analogies for Innovative Design:
Ideation Performance Based
on Analogical Distance,
Commonness, and Modality
of Examples
Drawing inspiration from examples by analogy can be a powerful tool for innovative
design during conceptual ideation but also carries the risk of negative design outcomes
(e.g., design fixation), depending on key properties of examples. Understanding these
properties is critical for effectively harnessing the power of analogy. The current
research explores how variations in analogical distance, commonness, and representa-
tion modality influence the effects of examples on conceptual ideation. Senior-level engi-
neering students generated solution concepts for an engineering design problem with or
without provided examples drawn from the U.S. Patent database. Examples were crossed
by analogical distance (near-field vs. far-field), commonness (more vs. less-common),
and modality (picture vs. text). A control group that received no examples was included
for comparison. Effects were examined on a mixture of ideation process and product var-
iables. Our results show positive effects of far-field and less-common examples on novelty
and variability in quality of solution concepts. These effects are not modulated by modal-
ity. However, detailed analyses of process variables suggest divergent inspiration path-
ways for far-field vs. less-common examples. Additionally, the combination of far-field,
less-common examples resulted in more novel concepts than in the control group. These
findings suggest guidelines for the effective design and implementation of design-by-anal-
ogy methods, particularly a focus on far-field, less-common examples during the ideation
process. [DOI: 10.1115/1.4004396]

Keywords: design cognition, design methods, conceptual design, innovation, analogy

1 Introduction

Innovation, defined as the capacity to generate ideas or products
that are both novel and useful, is a critical component of success-
ful design in today’s economy [1,2]. A number of investigators
have argued that innovation can be best managed in the “fuzzy
front end” of the design process [3,4], notably in the ideation
phase, where concepts are created either intuitively or through
systematic processes. While many approaches exist to create ideas
and concepts as part of ideation, the search for and use of analo-
gies have been shown to be quite powerful [5–8]. Analogy is a
mapping of knowledge from one domain to another enabled by a
supporting system of relations or representations between situa-
tions [9]. This process of comparison between situations fosters
new inferences and promotes construing problems in new insight-
ful ways. This process likewise is dependent on how the problem
is represented, encouraging multiple representations to more fully
enable analogical reasoning [10,11]. As an illustrative example,
the design concept for the bipolar plate of a fuel cell could be use-
fully informed by analogy to a plant leaf due to its similarity in
functionality. The most significant functions affecting the current
generation capability of a bipolar plate are “distribute fluid,”
“guide fluid,” and “disperse fluid.” The plant leaf possesses a sim-
ilar function chain, where the veins and lamina perform the func-

tions. As a result of this analogy, the bipolar plate flow field can
be designed to mimic the structure of a leaf [10,11].

Design-by-analogy is clearly a powerful tool in the conceptual
design process, and a number of methods have been developed to
harness its power, such as Synectics [12]—group design through
analogy types; French’s work on inspiration from nature [13];
Biomimetic concept generation [14]—a systematic tool to index
biological phenomena that links to textbook information; and
analogous design using the Function and Flow Basis [15,16]—
analogous and nonobvious product exploration using the func-
tional and flow basis. However, fundamental questions surround
the proper use of design-by-analogy methods. Most critical, and
the problems that are the focus in our work, are what should one
analogize over, and what reasoning modalities and associated rep-
resentations make innovative design-by-analogy more likely?

While these questions have remained largely unanswered in
specific knowledge domains such as engineering design, there is
related research literature in the domain of psychological studies
of creativity, reasoning, and problem solving. In what follows, we
review the relevant literature that motivate our present hypothe-
ses, describe the methods and findings of our cognitive study, and
then discuss the insights and implications of our work.

2 Background

2.1 Analogical Distance of Example Designs. One key vari-
able of interest with respect to the question of what one should
analogize over is analogical distance. This variable can be
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conceptualized as ranging over a continuum from far-field (from a
different problem domain) to near-field (from the same or very
similar problem domain), where analogies closer to the far-field
end point share little or no surface features with the target domain,
while analogies closer to the near-field end point share a signifi-
cant number of surface features. The potential for creative insights
seems clearest when the two domains being compared are very
different on the surface [17]. Classic accounts of creative discov-
eries and inventions often highlight the potential of far-field anal-
ogies for creative insights, including George Mestral’s invention
of Velcro via analogy to burdock root seeds, and Niels Bohr’s dis-
covery of the structure of atoms via analogy to the solar system.
Empirical work has also supported a link between far-field analo-
gies and innovative outcomes. For instance, it has been shown
that the number of far-field analogies used by designers during
ideation is positively related to the originality of proposed solu-
tions, as rated by a sample of potential customers [18]. Further,
exposure to surface dissimilar design examples increases idea
novelty relative to using no examples, and exposure to surface
similar examples decreases the variety of ideas generated relative
to surface dissimilar examples [19].

On the other hand, far-field analogies can be difficult to retrieve
from memory [20] or notice as relevant to one’s target problem
[5]. In addition, some investigators have disputed the privileged
role of far-field analogies in prominent inventions and discoveries
[21,22]. As such, it is an open question whether far-field analogies
are always beneficial to the design process. One way to tease apart
possible ways in which far-field and near-field analogies might
help or hinder designers is to use multiple measures of ideation
processes, including novelty and variety of ideas, as well as aver-
age quality and variance in idea quality. An initial testable hy-
pothesis is that providing far-field examples would allow one to
generate more novel ideas relative to near-field or no examples.

2.2 Commonness of Example Designs. Another potential
variable of interest is the commonness of example designs (i.e.,
how common the designs are found in designers’ worlds). The
commonness of the example design in its respective design space
increases the probability that a designer would have had prior ex-
posure and/or experience with the design. Psychologically, the
commonness of an example design is related to the degree to
which it activates relevant prior knowledge of a designer. This
knowledge can come from exposure to instances (since designed
objects exist in the world), or from deliberately structured experi-
ences, such as in engineering coursework or in the course of pro-
fessional design [23]. The psychological literature on creativity
and problem solving suggests that prior experience with an artifact
might influence one’s ability to flexibly re-represent and use it and
combine it with other concepts in a novel fashion. Take for
instance, Duncker’s [24] classic candle problem, where the task is
to fix a lighted candle on a wall in such a way that the candle wax
will not drip onto a table below, and the given materials are a can-
dle, a book of matches, and a box of thumb-tacks. A correct solu-
tion involves emptying the box of tacks and using it as a platform
for the candle; however, this solution eludes most solvers because
it requires recognizing an unconventional use of the box as a plat-
form. In fact, when the box is presented to solvers empty, with the
tacks beside it, solvers are much more likely to find the unconven-
tional solution [25]. Similarly, in Maier’s [26] two string problem,
where the task is to tie two strings together that are hanging from
the ceiling just out of arm’s reach from each other using various
objects available (e.g., a chair, a pair of pliers, etc.), people often
fail to recognize the solution of tying the pair of pliers to one
string and swinging it like a pendulum and catching it while stand-
ing on a chair between the strings. These findings demonstrate the
phenomenon of “functional fixedness,” where individuals have
difficulty seeing unusual alternative uses for an artifact.

Another potentially relevant finding in the psychological litera-
ture is that individuals who acquire experience with classes of in-

formation and procedures tend to represent them in relatively
large, holistic “chunks” in memory, organized by deep functional
and relational principles [27–29]. Many researchers have argued
that this ability to “chunk” underlies expertise and skill acquisi-
tion [27,30,31]. However, if the task at hand requires the individ-
ual to perceive or represent information in novel ways, e.g., to
stimulate creative ideation in design, representation of that infor-
mation in chunks might become a barrier to success, particularly
if processing of component parts of the information chunks helps
with re-representation [32–34].

These findings lead to a hypothesis that less-common example
designs, which designers are less likely to have been exposed to,
might present a unique advantage over more-common example
designs in terms of the potential for stimulating creative ideation.
Specifically, it could be that less-common examples are more
likely to support multiple interpretations, and thus facilitate
broader search through the space of possible solutions. Addition-
ally, given that the commonness of example designs in the world
(e.g., in practice, curriculum, etc.) is related to its representation
in designers’ long-term memory, e.g., ease/probability of recall,
one could hypothesize that less-common examples might confer
an advantage in terms of the novelty of solution paths they inspire.
However, the literature gives no a priori reason to expect effects
of commonness on mean quality of solution concepts.

2.3 Modality of Example Designs. With respect to the
question of optimal reasoning modalities, a potential variable of
interest is the contrast between pictorial and text-based represen-
tations of examples. One possible reason to investigate this con-
trast is that pictorial representations, e.g., sketches, photographs,
and engineering drawings, often contain a higher degree of su-
perficial features than text-based representations of the same in-
formation. This might be detrimental to conceptual design, as
the presence of representations with a high degree of superficial
detail, such as in detailed prototypes, in the physical design envi-
ronment tend to restrict the retrieval of far-field analogies from
memory [7]. On the other hand, some investigators argue that
pictorial-based representations are better for conceptual design;
for example, it has been shown that novice designers who are
presented with sketches of example designs produce more novel
and higher quality solution concepts on average relative to being
presented with text-based example designs [35]. At a pragmatic
level, too, in creating design-by-analogy tools, one ultimately
has to decide on a representation format for potential analogies;
thus, it is important to investigate if it matters whether they are
represented in pictorial or text-based formats [10,11]. Addition-
ally, it is important to know if the effects of example analogical
distance or commonness are modulated by their representation
modality.

2.4 Summary. In summary, a review of the relevant psycho-
logical literature suggests that investigating variations in example
analogical distance, commonness, and modality might shed some
important light on the questions regarding what to analogize over
and whether there are optimal reasoning modalities. Prior work
tentatively supports a hypothesis favoring far-field over near-field
examples. With respect to commonness, to our knowledge, no
studies have directly tested the effects of example commonness
on conceptual ideation; however, the literature does suggest a hy-
pothesis favoring less-common over more-common examples.
Importantly, the theoretical and empirical literature suggest that
there might be different effects of example analogical distance
and commonness along different dimensions of the ideation pro-
cess, thus motivating a fine-grained analytic approach to ensure
that the effects of these variables can be clearly understood.
Finally, the literature appears to be relatively equivocal about the
contrast between pictorial and text-based representations; thus,
our investigation of this variable in the present study is more ex-
ploratory than hypothesis-driven.
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3 Experimental Methods

3.1 Design. To investigate the effects of example analogical
distance and commonness on conceptual design processes and
possible interactions with modality, we conducted a 2 (distance:
far-field vs. near-field) !2 (commonness: more-common vs. less-
common) !2 (modality: pictures vs. text) factorial experiment,
where participants, i.e., senior-level engineering students, were
given a real-world design problem and were asked to generate so-
lution concepts first briefly without examples, such that they
understood the problem, and then with examples, to evaluate the
effects of examples on problem solving. To establish whether
examples of different types enabled or hindered problem solving,
a control group of students executed a similar procedure but
received no examples.

3.2 Participants. Participants were 153 students (predomi-
nantly mechanical engineering undergraduates) enrolled at two
research universities in the United States. Participants were
recruited from classes and were given either extra credit or com-
pensation of $15 for their participation. Participants ranged from
20 to 38 years in age (M¼ 22, SD¼ 1.89). 70% were male. 87%
were undergraduate engineering students (95% mechanical engi-
neering, 5% electrical engineering and others) and 13% masters
students in disciplines related to product design (e.g., mechanical
engineering, product development, business administration). 66%
of the participants had at least 1–6 months of engineering intern-
ship experience, and all but 2 out of the 153 students had experi-
ence with at least one prior design project in their engineering
curriculum. Approximately 82% of the students had taken at least
one course where a structured approach to design was taught.
Thus, most of the participants had relevant mechanical engineer-
ing domain knowledge and design experience.

Participants were randomly assigned to one of the nine possible
conditions in each class by distributing folders of paper materials
prior to students arriving in class. The obtained distribution of par-
ticipants across the nine conditions is shown in Table 1—the sam-
ple populations, Ns, are unequal not because of dropout but rather
from stochasticity in where students chose to sit down. With these
sample populations, statistical power for detecting three-way
interactions (not our theoretical goal) is modest, but power for
detecting two-way interactions and main effects is good.

3.3 Design Problem. The design problem was to design a
low cost, easy to manufacture, and portable device to collect
energy from human motion for use in developing and impover-
ished rural communities, e.g., India, many African countries. This
design problem was selected to be meaningful and challenging to
our participants. The problem was meaningful in the sense that

real-world engineering firms are seeking solutions to this problem
and the problem involves social value; thus, students would be
appropriately engaged during the task [36–38]. The problem was
challenging in the sense that a dominant or accepted set of solu-
tions to the problem has yet to be developed (so students would
not simply retrieve past solutions), but it was not so complex as to
be a hopeless task requiring a large design team and very detailed
task analysis.

3.4 Selection of Examples. Examples were patents selected
from the U.S. Patent Database. Candidate patents were retrieved
using keyword search on the U.S. Patent and Trade Office web-
site. The keywords used were basic physical principles, such as
induction, heat transfer, potential energy, as well as larger cate-
gorical terms like mechanical energy. The final set of eight patents
was selected by two PhD-level mechanical engineering faculty
based on two sets of criteria: (1) balanced crossing of the analogi-
cal distance and commonness factors, such that there would be
two patents in each of the four possible combinations, and (2)
overall applicability to the design problem, over and above ana-
logical distance and commonness. Each participant in the analogy
conditions received two examples of a particular type, roughly
balanced across conditions for applicability. The patents for each
of the conditions are shown in Table 2.

With respect to the first set of criteria, the specific guidelines
for selection were as follows:

1. Distance: Far-field patents were devices judged to be not
directly for the purpose of generating electricity, while near-
field patents were those judged to be directly for the purpose
of generating electricity.

2. Commonness: More-common patents were devices judged
likely to be encountered by our target population in their
standard engineering curriculum and/or everyday life, while
less-common patents were those judged unlikely to be seen
previously by the participants under typical circumstances.

With respect to the modality factor, in the picture conditions,
participants received a representative first figure from the patent,
which typically provides a good overview of the device, while in
the text conditions, participants received the patent abstract. In
some cases, abstracts differed substantially in length; to equate for
quantity of text across conditions, overly brief abstracts were aug-
mented with additional text from the body of the patent, which
elaborated on the details of the design and technology. To provide
some foundational context, all text-and-picture-condition partici-
pants also received the patent title.

3.5 Experimental Procedure. The experiments were con-
ducted during class. Participants generated solution concepts in
three phases and subsequently completed a background survey.
Participants proceeded through the phases using a sequence of
envelopes to carefully control timing of the task and exposure to
examples across conditions. In particular, we wanted to ensure
that design examples were received only after participants had
made some substantial progress in ideation, since prior work has
shown that examples and potential analogies are most helpful
when received after ideation has already begun [39,40]. The over-
all time allowed for this task was sufficient to allow for broad ex-
ploration of the concept space, but not enough to develop

Table 1 Distribution of participants across conditions

Near-field Far-field

More-common Less-common More-common Less-common

Picture 13 17 15 16
Text 17 16 16 17
Control 24

Table 2 Patents for each condition

Near-field Far-field

More-common -Waterwheel-driven generating assembly (6208037) -Escapement mechanism for pendulum clocks (4139981)
-Recovery of geothermal energy (4030549) -Induction loop vehicle detector (4568937)

Less-common -Apparatus for producing electrical energy from ocean waves (4266143) -Accelerometer (4335611)
-Freeway power generator (4247785) -Earthquake isolation floor (4402483)
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particular ideas in depth, matching our focus on the ideation
process.

Analogy and control groups executed the same overall
sequence, but differed in the particular activities in the second
phase of ideation (see Fig. 1 for a comparison of the procedures).
In general, the sequence of phases was to: (1) read design problem
and generate solution concepts, (2) either (a) review two patents
and write/draw solutions/ideas that come to mind when looking at
the patents or (b) continue generating concepts, and (3) generate
more solution concepts. Each phase lasted 10 min.

With respect to idea generation, participants were instructed to
generate and record as many solution concepts to the design prob-
lem as they could, including novel and experimental ones, using
words and/or sketches to describe their solution concepts.

4 Ideation Metrics

The experiment generated 1321 total ideas. To thoroughly
explore the range of effects of varying the analogical distance,
commonness, and modality of design examples on conceptual
design processes, we applied a range of ideation metrics to these
ideas: (1) the extent to which solution features were transferred
from examples, (2) quantity of ideation, (3) breadth of search
through the space of possible solutions, (4) quality of solution
concepts, and (5) novelty of solution concepts. The first three met-
rics provided measures of the ideation process of participants and
how they processed the examples: examining solution transfer
provides insight into the mechanisms by which participants might
be stimulated by the examples, e.g., did they actually use solution
elements; measuring quantity of ideation gave a sense of how par-
ticipants were exploring the design space, i.e., whether they were
generating and refining a small number of ideas, or exploring mul-
tiple concepts and variations of concepts, which is associated with

higher likelihood of generating high-quality concepts [4]; finally,
breadth of search was taken to be a measure of the ability to gen-
erate a wide variety of ideas, which is associated with the ability
to restructure problems, an important component of creative abil-
ity [41–43]. The final two metrics focused on the ideation prod-
ucts of participants. We investigated quality because in design, a
baseline requirement is that concepts must meet customer specifi-
cations; design concepts that are novel but do not meet customer
specifications cannot be considered acceptable designs, let alone
creative ones [41]. We investigated novelty because there is a
high degree of consensus in the literature that creative products
are at least novel [41,42].

4.1 Data Preprocessing. The raw output of each participant
was in the form of sketches and/or verbal descriptions of concepts.
Examples of participant-generated solution concepts are shown in
Fig. 2. A number of preprocessing steps were necessary to prepare
the data for coding and analysis.

First, each participant’s raw output was segmented by a trained
coder into solution concepts. A sketch and/or verbal description
was segmented as one solution concept if it was judged to
describe one distinct solution to the design problem. Variations of
solutions (e.g., with minor modifications) were counted as distinct
solution concepts. Segmentation was independently checked by a
second coder. Inter-rater agreement was high (96%), and all dis-
agreements were resolved by discussion. Next, sets of two senior
mechanical engineering students rated each solution concept as
meeting or not meeting the minimum constraints of the design
problem, as described above, to remove off-topic inspirations gen-
erated by the patent examples, especially in the second phase.
Inter-rater agreement was acceptable, with an average Cohen’s
kappa of 0.72. All disagreements were resolved through discus-
sion. The 1066 solution concepts remaining after preprocessing
constituted the final data set for analysis.

4.2 Solution Transfer. Solution transfer was defined as the
degree to which a given participant’s idea set contained solution
features from the examples she/he received. The process of pro-
ducing a solution transfer score for each participant was as fol-
lows. First, key features were generated by one of the co-authors
for each of the eight patent examples, and the list was cross-
checked for relevance by the other co-authors. Recall that each
participant received two examples; however, since picture and
text examples were essentially the same examples (only in differ-
ent representations), the 2! 2! 2 design reduced to a 2! 2
design, leaving a total of eight examples. A total of 39 key fea-
tures were identified. Because some features overlapped across
examples (e.g., “built into ground, stationary, or permanent” was

Fig. 1 Comparison of experimental procedures for analogy vs.
control groups

Fig. 2 Example participant solution concepts
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associated with four patent examples), there was not a simple one-
to-one mapping of features to examples. The number of features
associated with each of the eight examples ranged from 4 to 7
(M¼ 4.9, SD¼ 1.0). Second, each participant solution concept
was coded for the presence or absence of a set of the features
found in the full set of patent examples presented to participants.
The first 50% of solution concepts was double-coded by two sen-
ior mechanical engineering students to establish reliability. Later,
all coding was completed by one student only. Test-retest meas-
ures of reliability were obtained in lieu of inter-rater reliabilities.
Cohen’s kappa averaged across features was 0.57. Because some
features had low coding reliability or high overlap of features
across many of the patents or simply were common elements of
most proposed solutions across all conditions, the initial set of 39
features was filtered down to 23 features according to three
criteria:

1. Acceptable inter-rater agreement, i.e., Cohen’s kappa greater
than 0.4.

2. Not shared by more than three examples.
3. Not too common, i.e., base rate (collapsed across conditions)

less than 0.5.

After filtering, the number of features ranged from 1 to 5
(M¼ 2.9, SD¼ 1.4) per example and from 4 to 8 (M¼ 5.8,
SD¼ 1.7) per each of the four conditions in the distance by com-
monness 2" 2 design. Cohen’s kappa averaged across the filtered
set of features was 0.66.

To produce solution transfer scores for each participant, the fol-
lowing procedure was used. First, for each cell in the 2" 2
(distance" commonness), we computed for each participant the
proportion of his/her ideas that had at least one solution feature
from the examples she/he received. Next, this proportion was con-
verted into a standardized z-score by subtracting the mean and
dividing by the standard deviation of proportion scores for all par-
ticipants who were not in that 2" 2 cell. The reason for using this
transformation was that solution features from examples could
occur in participants’ ideas even if they never saw the relevant
examples; this transformation allows us to separate the probability
of participants using solution features from examples they have
seen from the probability of using those solution features even if
they had never seen the examples. For each participant, the trans-
fer score was the z-score of each feature relevant to the examples
they actually received.

The solution transfer score thus gave a measure of the degree to
which a given participant’s idea set differed from “normal” in
terms of the proportion of ideas with at least one feature from the
examples she/he received. To illustrate, suppose participant 1001
had a z-score of 1.34 for far-field, more-common examples. This
number would say that the proportion of 1001’s ideas with at least
one solution feature from the examples s/he received was 1.34
standard deviations higher than the mean proportion of ideas with
at least one solution from those examples under “normal” circum-
stances (i.e., without having seen either of the two far-field, more-
common examples).

4.3 Quantity of Ideation. Quantity of ideation was defined
as the number of solution concepts generated post analogy, i.e.,
from the second phase of ideation onwards, that met the minimum
constraints of the design problem, viz. (1) the device generates
electricity, and (2) it uses human motion as the primary input. As
noted in the introduction, quantity is often taken to be a key com-
ponent of creativity. Quantity was defined at the level of the par-
ticipant, i.e., each participant received a single quantity score.
Because we were primarily interested in the effects of examples
on quantity, analyses concentrated on the number of solution con-
cepts generated after receiving examples (i.e., after the first phase)
adjusting for the number of solution concepts generated in the first
phase (which acted as a covariate to adjust for baseline variation
in quantity across participants).

4.4 Breadth of Search. Breadth of search was conceptual-
ized in our study as the proportion of the space of possible solu-
tions searched by a given participant. To determine the space of
possible solutions, the design problem was first functionally
decomposed into potential subfunctions by one of the authors,
drawing from the reconciled function and flow basis of Hirtz and
colleagues [16].

Due to the open-ended nature of the design problem, a rela-
tively large number of subfunctions were initially generated, as
follows:

1. Import/accept human interaction
2. Transform human energy to mechanical energy
3. Transform human energy to alternative energy
4. Import other material
5. Contain/store other material
6. Transfer other material
7. Import alternative energy source
8. Transform alternative energy source into mechanical

energy
9. Transform alternative energy source to alternative energy
10. Transform collected energy to mechanical energy
11. Transmit mechanical energy
12. Transform mechanical energy
13. Store mechanical energy
14. Transform mechanical to alternative energy
15. Transform alternative energy to electrical energy
16. Actuate/deactuate energy
17. Transform mechanical energy to electrical energy
18. Condition electrical energy
19. Store electrical energy
20. Supply electrical energy
21. Transmit electrical energy
22. Convert electrical to light or EM

Each subfunction solution consisted of a how and what compo-
nent, where the former specifies the component of the solution
concept that implements the subfunction, and the latter specifies
either the input or the output of the subfunction (whichever is the
less specified). For example, a solution for the subfunction
“import human” might be “foot with pedals.”

Two senior mechanical engineering students independently
coded the solutions to the subfunctions for each solution concept.
The solution types for the how and what components of each sub-
function were generated bottom-up by the students as they coded,
with each new solution type being added to a running list of solu-
tion types; the running list of solution types for each subfunction
constituted the coding scheme. Inter-rater reliability was high,
with an average Cohen’s kappa across subfunctions of 0.84. All
disagreements were resolved by discussion.

While the nature of the design problem was open-ended, a core
set of subfunctions emerged from the dataset: only a small subset
of the initial set of subfunctions occurred often enough for stable
estimates of breadth and novelty (i.e., base rate greater than 0.1,
collapsed across conditions):

1. Import human
2. Transform human energy to mechanical energy
3. Import alternative energy
4. Transform alternative energy to mechanical energy
5. Transform mechanical energy to electrical energy
6. Store electrical energy

Upon more detailed analysis, it turned out that there were only
two solution types for the subfunction “store electrical energy,”
namely “battery” or “capacitor,” and the frequency of occurrence
for each solution type was relatively equivalent; thus, novelty
scores for this subfunction would be unlikely to differentiate
between participants. Furthermore, since the design problem was
focused on the problem of harvesting (vs. storing) energy, data
for this subfunction were not included in computations of
breadth.
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We defined the space of possible solutions for each of the what
and how components of each subfunction by enumerating the
number of distinct solution types generated by participants across
all phases of ideation. A breadth score bj for each participant on
subfunction j was then computed with

bj ¼
Xn

k¼1

wjk "
Cjk

Tjk
(1)

where Cjk is the total number of solution types generated by the
participant for level k of subfunction j, Tjk is the total number of
solution types produced by all participants for level k of subfunc-
tion j, and wk is the weight assigned level k. To give priority to
breadth of search in the what space (types of energy/material
manipulated), we gave a weight of 0.66 to the what level (which
was assigned to k¼ 1), and a weight of .33 to the how level (which
was assigned to k¼ 2). An overall breadth score for each partici-
pant was given by the average of breadth scores for each of the
three subfunctions j.

4.5 Quality. Quality of solution concepts was measured
using holistic ratings on a set of subdimensions of quality. Two
other senior mechanical engineering students independently coded
solution concepts on 5-point scales ranging from 0 to 4 (0 is unac-
ceptable and 4 is excellent) for six subdimensions of quality, cor-
responding to a set of possible customer specifications:

1. Cost
2. Feasibility of materials/cost/manufacturing
3. Feasibility of energy input/output ratio
4. Number of people required to operate device at a given

moment
5. Estimated energy output
6. Portability
7. Time to set up and build, assuming all parts already avail-

able at hand

These subdimensions were generated by the second author, who
is a Ph.D. candidate in mechanical engineering focusing on design
methods and cognition, and checked for validity by two other
authors, who are mechanical engineering faculty specializing in en-
gineering design. For each subdimension, each point on the 5-point
scale was anchored with a unique descriptor. For example, for the
“feasibility of energy input/output ratio” subdimension, 0 was
“unfeasible design or input energy completely dwarfs output,” 1 was
“input less than output”, 2 was “I/O about even,” 3 was “sustainable/
little surplus output; human input easy,” and 4 was “output signifi-
cantly higher than input.” Inter-rater agreement was computed using
a Pearson correlation between the ratings of the two coders for each
subdimension. The average of correlations across subdimensions
was 0.65, and the range was from 0.49 to 0.77. An overall quality
score was computed for each solution concept, as given by

Q ¼

Pn

j¼1

qj " rj

Qmax
(2)

where qj is the quality score for quality subdimension j, rj is the
reliability of the coding for that subdimension, and Qmax is the max-
imum possible overall quality score, which would be given by set-
ting qj to 4 for each subdimension. The contributions of
subdimension scores to the overall quality score were weighted by
reliability to minimize the influence of measurement error. Since
the overall quality score was a proportion of the maximum possible
quality score, the score ranged from 0 to 1. Agreement between
coders at the level of this composite score was acceptable
(r¼ 0.68).

4.6 Novelty. Novelty was defined as the degree to which a
particular solution type was unusual within a space of possible

solutions. This approach allowed us to avoid the difficulties of
judging the novelty of thousands of solution concepts via holistic
rating methods. Recall that for the breadth metric, the space of
possible solutions was defined in terms of a set of five core sub-
functions for the design problem; recall further that each subfunc-
tion was decomposed further into what and how components,
where the former specifies the component of the solution concept
that implements the subfunction, and the latter specifies either the
input or the output of the subfunction (whichever is the less speci-
fied). Rather than computing novelty scores for solutions to each
level of each subfunction (the what and how levels), we chose to
compute novelty scores for the conjunction of what and how solu-
tion components for each subfunction. For example, rather than
computing the relative unusualness of the solution components
“foot” and “pedals” separately for the solution “foot with pedals”
for the subfunction “import human interaction,” the relative
unusualness of the solution “foot with pedals” relative to other
solutions would be computed. The rationale for this choice was
that these words in conjunction as a solution have a specific mean-
ing that needed to be considered. Novelty scores were computed
for each subfunction solution using Eq. (3), which is a formula
adapted from Ref. [39]

Ni ¼
Ti # Ci

Ti
(3)

where Ti is the total number of solution tokens generated for sub-
function i in the first phase of ideation (collapsed across all partic-
ipants), and Ci is the total number of solution tokens of the current
solution type in the first phase of ideation. Because this measure
was essentially a measure of proportion, the novelty score for
each idea ranged from 0 to 1, with 0 representing solution types
found in every solution (this extreme was never observed) and 1
representing solution types that never occurred in the first phase.
The initial set of solution concepts (generated in the first phase of
ideation) was taken to be the original design space of the partici-
pants since it corresponded to concepts generated prior to receiv-
ing examples. The final novelty score for each solution concept
was the average of its subfunction novelty scores.

5 Results

5.1 Relationships Between Metrics. Analysis of the inter-
relationships between the ideation metrics suggested a preliminary
process model that could account for these correlations and help
to conceptually organize the results (see Fig. 3). Of course, corre-
lations per se do not guarantee causation and other causal models
are possible.

The preliminary process model is as follows:

• Increased solution transfer results in decreased quantity, pos-
sibly because many participants had trouble thinking of solu-
tions beyond the ones presented.

• A high quantity of ideation allows for greater breadth of
search, even if only on a statistical sampling basis.

Fig. 3 Summary of intermetric correlations. Numbers shown
are Pearson’s r. All correlations are significant at p< 0.01.
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• Greater breadth of search, perhaps also only on a statistical
sampling basis, in turn allows for the generation of higher
novelty and higher quality solution concepts.

• Repeatedly searching on the fringes of the design space (as
measured by high average novelty) further increases the
probability of finding a highly novel concept.

• Finally, increasing the variability of the quality of solution
concepts increases the probability of generating a high-qual-
ity solution concept. This last relationship is in accord with
the work of Ulrich and colleagues in the field of innovation
management, who have argued and showed empirically that
one way to increase the likelihood of finding high market
potential product concepts is to increase the variance of the
quality of the concepts that are generated [4,44].

5.2 Effects of Analogy Manipulations on Ideation
Metrics. We now present our findings by manipulation (distance,
commonness, and modality), using the preliminary process model
as an organizational framework. Effects of manipulations on the
ideation metrics will be described following the flow of the process
model, first considering solution transfer, quantity, and breadth,
followed by consideration of effects on quality and novelty of
ideation. Separate 3-way (distance! commonness !modality)
analysis of variance (ANOVA) models were computed for each
process variable in the model. In some cases (indicated in each
case), the level of that variable during the pre-analogy phase was
used as a covariate in the analysis because the baseline measure
was a significant predictor of postanalogy performance.

5.2.1 Analogical Distance of Examples. There was a main
effect of example distance (p< 0.01, g2¼ 0.08) on solution trans-
fer, where participants who received far-field examples were
much more likely than participants who received near-field exam-
ples to use solution elements from the examples they received
(d¼ 0.60);1 in fact, solution features from near-field examples
were no more likely to be present in participant solutions after
processing examples relative to the pre-example phase (see Fig. 4,
bottom left).

There was also a main effect on quantity (p< 0.01, g¼ 0.05),
where participants who received far-field examples generated sig-
nificantly fewer solution concepts relative to participants who
received near-field examples (p< 0.05, d¼#0.30; see Fig. 4, upper
left). There were no significant differences in terms of quantity
between receiving no examples (control) and receiving either far- or
near-field examples. However, the small effect of distance on quan-
tity did not translate into an effect on breadth: there were no reliable
effects of distance on breadth of search (p¼ 0.78, g2¼ 0.00).

With respect to quality of solution concepts, there were no
effects of distance on either mean or maximum quality. However,
there was a main effect of distance of the variability in quality of
participants’ solution concepts (p< 0.05, g2¼ 0.06; see Fig. 4,
lower right), where participants who received far-field examples
had a larger standard deviation in quality of solution concepts

Fig. 4 Summary of effects of example distance. *p<0.05 and **p< 0.01. Control group data are
shown in white bars. Error bars are61 standard error.

1d statistics estimate the size of the difference in group means in terms of the av-
erage standard deviation of the two groups in the contrast; in this case, d¼ 0.60 esti-
mates that the mean probability of transfer is greater with far-field vs nearfield
examples by 0.60 of a standard deviation (a moderate to large difference).
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than participants who received either near-field examples
(p< 0.05, d¼ 0.64) or no examples (p< 0.05, d¼ 0.78). There
were no significant differences between receiving near-field
examples vs. no examples.

Finally, there was a main effect of distance on mean novelty
(p< 0.05, g2¼ 0.04), where participants who received far-field
examples generated solution concepts that were more novel on av-
erage relative to participants who received near-field examples
(p< 0.05, d¼ 0.56; see Fig. 4, upper right). Similar patterns of
effects were found with maximum novelty of solution concepts
(p< 0.05, g2¼ 0.04), where the most novel solution concept of
participants who received far-field examples was more novel on
average relative to the most novel solution concept of participants
who received near-field examples (p < 0.05, d¼ 0.56). There
were no significant differences between participants who received
no examples (control) vs. near- or far-field examples on either
mean or maximum novelty.

In summary (see Fig. 4), example distance appeared to have
significant effects on multiple aspects of ideation. Specifically,
novelty and variability in quality of concepts increased as a func-
tion of receiving far-field examples, although only in the latter
case was the contrast with control statistically significant. The so-
lution transfer metric suggests that these increases might be asso-
ciated with incorporating solution elements from the far-field
examples. However, the benefits of far-field examples came with
a slight cost, viz. a reduction in quantity: in meaningful terms, the
cost of processing far-field examples given a standard time for
ideation appeared to be, on average, about one solution concept.

5.2.2 Commonness of Examples. Turning now to the main
effects of commonness in the same ANOVAs, there were no
reliable effects on solution transfer (p = 0.30, g2¼ 0.01). How-
ever, there was a main effect on quantity (p< 0.01, g2¼ 0.12),
where participants who received more-common examples gen-
erated significantly fewer solution concepts relative to partici-
pants who received either more-common examples (p < 0.01,
d¼"0.67) or no examples (p < 0.01, d¼"0.76; Fig. 5, upper
left). There were no significant differences in quantity between
participants who received less-common vs. no examples (con-
trol). There was also a main effect of on breadth of search
(p< 0.01, g2¼ 0.07), where participants who received more-
common examples searched less of the design space than par-
ticipants who received either less-common examples (p< 0.05,
d¼"0.61; Fig. 5, lower middle) or no examples (p< 0.01,
d¼"1.03). There were no significant differences in breadth of
search between participants who received less-common vs. no
examples (control).

With respect to quality of solution concepts, there were no reli-
able effects of commonness on either mean or max quality. How-
ever, there was a main effect on variability in quality of
participants’ solution concepts (p< 0.05, g2¼ 0.06; see Fig. 5,
lower right), where participants who received less-common exam-
ples had a larger standard deviation in quality of solution concepts
than participants who received either more-common examples
(p< 0.05, d¼ 0.62) or no examples (p< 0.05, d¼ 0.68). There
were no significant differences between receiving more-common
examples vs. no examples.

Fig. 5 Summary of effects of example commonness. *p< 0.05and **p< 0.01. Control group data
are shown in white bars. Error bars are61 standard error.
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Finally, there were main effects on mean novelty (p< 0.01,
g2¼ 0.10), where participants who received less-common exam-
ples generated solution concepts that were more novel on average
relative to participants who received more-common examples
(p < 0.01, d¼ 0.61; see Fig. 5 upper right) and maximum novelty
(p< 0.01, g2¼ 0.96), where the most novel solution concept of
participants who received less-common examples was more novel
on average relative to the most novel solution concept of partici-
pants who received more-common examples (p < 0.01, d¼ 0.61).
There were no significant differences between participants who
received no examples (control) vs. more- or less-common exam-
ples on either mean or maximum novelty.

In summary (see Fig. 5), example commonness also appeared
to have significant effects on ideation. Less-common examples
were associated with more positive ideation processes and prod-
ucts relative to more-common examples, with benefits for quan-
tity and breadth of ideation, variability in solution quality, and
novelty of solution concepts, although only in the case of vari-

ability in solution quality was the contrast with control statisti-
cally significant.

5.2.3 Joint Effects of Example Distance and Commonness on
Novelty. While far-field and less-common examples separately
increased novelty of ideas, neither far-field examples as a whole
nor less-common examples as a whole were significantly different
from control, which sat in the middle. To examine whether the
combination of far-field and less-common properties increased
novelty over control, we used a Dunnett’s multiple comparison
post hoc test. Since there were no effects of modality on novelty
(described below), we collapsed across the picture and text factors
and conducted the post hoc test comparing each of the combina-
tions in the 2" 2 matrix (distance x commonness) with the control
condition as a reference group. The post hoc test showed that the
combination of far-field, less-common examples did in fact
increase novelty vs. control, for both mean (d¼ 1.14; see Fig. 6)
and max (d¼ 1.29).

5.3 Effects of Example Modality. Turning to the effects of
modality in the overall ANOVAs, there was a main effect of
example modality (p< 0.01, g2¼ 0.09) on solution transfer, where
participants who received their examples in text form were more
likely to use solution elements from the examples they received,
regardless of distance or commonness of the example (d¼ 0.60;
Fig. 7, lower left).

There was also a main effect of on quantity (p< 0.01, g¼ 0.12;
Fig. 7, upper left), where participants who received text examples
generated significantly fewer solution concepts relative to partici-
pants who received either picture examples (p< 0.01, d¼#0.67)
or no examples (control; p< 0.05, d¼#0.56). There were no sig-
nificant differences between participants who received picture
examples vs. no examples (control). Thus, receiving examples in
text form increased the likelihood of being able to use solution

Fig. 6 Mean novelty of solution concepts by example distance
and commonness. *p<0.05. Error bars are61 standard error.

Fig. 7 Summary of effects of example modality. *p<0.05 and **p< 0.01. Control group data are
shown in white bars. Error bars are61 standard error.
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elements from those examples relative to picture form, but also
decreased quantity by an average of about two concepts relative
to receiving either picture or text examples.

There were no additional effects of modality on the other de-
pendent measures (breadth, p¼ 0.11, g2¼ 0.03; mean novelty,
p¼ 0.20, g2¼ 0.02; max novelty, p¼ 0.49, g2¼ 0.00; quality vari-
ability, p¼ 0.44, g2¼ 0.01). Thus, modality had little impact on
the key end-state outputs of the ideation process, unlike the effects
of example commonness or example analogical distance.

6 Discussion

6.1 Optimal Example Types. Our findings demonstrate that
the analogical distance and commonness of examples significantly
influences their impact on designers’ ideation. With respect to an-
alogical distance, augmenting ideation with far-field examples
brings significant benefits vis-à-vis the kinds of concepts that can
be generated; specifically, ideation with far-field examples enhan-
ces the ability to generate highly novel solution concepts and also
allows for more variability in the quality of concepts, which may
increase the likelihood of generating high quality concepts. It is
interesting to note that, even though the far-field examples we
gave participants were not energy-generating devices, they were
still able to benefit from the concepts and solution elements in the
devices. This sort of transfer is greater in distance than typically
seen in the analogy literature, where far-field analogies in problem
solving are usually from cases in other domains that are surface
dissimilar but still solve the same basic problem [20,45].

However, the use of far-field examples was not without some
cost. Far-field examples reduced overall quantity of ideation rela-
tive to near-field or no examples. This finding can be interpreted
in terms of processing difficulty. When we computed an addi-
tional 3-way ANOVA model on quantity for only the final phase
of ideation, removing from consideration quantity of ideation
while processing examples, the effects of distance were no longer
present (p¼ 0.47). This suggests that the reduction in quantity can
be attributed to the time taken to map the far-field example to the
design problem. Thus, it appears that far-field examples not only
carry with them the potential to increase novelty and quality of
design concepts generated but also carry an initial processing cost
in terms of time taken to map them to the target problem.

With respect to commonness of examples, we found that the
use of less-common examples positively impacts ideation. Less-
common examples resulted in increased quantity of ideation,
breadth of search, and higher novelty of ideas relative to more-
common examples. In a follow-up analysis analyzing quantity for
only the final phase of ideation, the positive effects of less-com-
mon examples relative to more-common examples were still pres-
ent (p< 0.05, d¼ 0.56), suggesting that the effects cannot be
explained simply in terms of initial processing costs, as in the case
of distance effects on quantity. Thus, it seems that less-common
examples might be more beneficial for stimulating ideation, par-
ticularly in terms of novelty of concepts generated. This finding is
in accord with some work in the domain of artistic creativity,
where it has been shown that copying novel artworks has a posi-
tive effect on the ability of art students to flexibly re-interpret art-
work and increases the novelty of the artworks produced [46].

While distance and commonness had some similar effects on
ideation processes and products, our fine-grained analytic
approach suggests some potentially important distinctions. The
critical contrast seems to be with respect to effects on quantity
and breadth of ideation. Far-field examples increased novelty of
solutions and variability in solution quality, but appeared to do so
via solution transfer, and resulted in decreased quantity; in con-
trast, less-common examples also increased novelty and quality
variability, but appeared to do so via broadening the search space
and increasing quantity. One way to interpret this contrast is that
example distance and commonness have different mechanisms of
inspiration. Based on the results, one could hypothesize that far-

field examples inspire designers by moving them into one or two
novel regions of the design space (high solution transfer, high
novelty), which they then explore in more depth (low quantity, no
benefits on breadth); in contrast, one could hypothesize that less-
common examples inspire designers by moving them into multi-
ple different regions of the design space via re-interpretation of
design functions and features (low solution transfer, high breadth,
and quantity).

6.2 Optimal Representation Modality of Examples. With
regard to the outcome measures of novelty and quality of solution
concepts, we found that the representation modality of examples
did not change the effects of the distance and commonness factors
on ideation. However, we did find evidence for a negative effect
of text representations on overall quantity of ideation relative to
picture or no examples. Similar to the effects of distance on quan-
tity, this suppression effect of text representations can be inter-
preted in terms of initial processing costs: when we analyzed only
the last phase of ideation, the effect of modality was weaker (pic-
tures vs. text, d¼ 0.32; pictures vs. control, d¼ 0.45) and no lon-
ger statistically significant (p¼ 0.07). As an ancient proverb puts
it, one picture may be worth 10,000 words with respect to convey-
ing design concepts.

6.3 Caveats. The current work comes with a number of cav-
eats. First, we have examined only one design problem. Although
a real design problem of some complexity, examples may have
different effects on more complex design problems. Second, we
examined the effects of particular examples rather than a range of
examples sampled multiple times from a class of examples. This
experimental design choice made it more feasible to analyze solu-
tion transfer but raises possibilities of effects being caused by odd
examples or example descriptions. To reduce this threat, we had
two examples per condition, and the factorial design of the study
permits for multiple replications of main effects. Third, our partic-
ipants were senior-level engineering students, for the most part,
rather than expert designers, and there is some research to suggest
that novices have more difficulty with analogical mappings [5,47].
However, design teams sometimes include less experienced
designers. Finally, our study focused only on the earliest ideation
phase, and future work will have to examine the effects of exam-
ples on downstream, and in particular finished, solutions. This
restriction was most salient in the analyses of quality in that many
of the ideas were not feasible or not fleshed out sufficiently to
determine feasibility. However, a number of studies point to early
ideation as a key moment for intervention to generate innovative
designs [3,4].

6.4 Practical Implications and Future Work. The overall
focus of this study was on whether particular kinds of examples
are more helpful than others for stimulating ideation. However,
with the inclusion of a control group, which received no exam-
ples, we were able to answer a separate but related question: all
things considered, does analogizing over examples confer benefits
over and above ideating without examples? In other words, is
design-by-analogy worth the extra time and effort? Our findings
suggest that if the goal of conceptual ideation is to ultimately gen-
erate and develop a concept that is high quality and novel, then
the answer is yes.

There are also implications for the design of tools and methods
to support design-by-analogy. As noted in the introduction, a
range of previous design-by-analogy methods have been devel-
oped; of particular interest is the development of computational
tools that automate the search for analogies [48]. It is well known
in the psychological literature that retrieving far-field analogies is
cognitively difficult; remindings tend to be significantly con-
strained by surface similarity [49], reducing the probability of
retrieving potentially relevant surface dissimilar analogies. Thus,
computational tools that are able to define and compute functional
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and surface similarity between items in a design space in a prin-
cipled manner relative to the current design problem would hold
excellent potential as aids for inspiration. These tools might be
able to maximize the potential benefits of analogies by retrieving
and delivering to the designer in a timely manner surface dissimi-
lar analogies and potentially (as our findings suggest) even analo-
gies that do not necessarily provide direct solutions to the target
problem. Additionally, if these systems are able to give priority to
analogies that are relatively unusual or infrequently encountered,
the potential for inspiration might be even higher.

Currently, the state of the art for computational design-by-anal-
ogy tools has not reached the point of being able to provide flexi-
ble and real-time support in this manner. The present work
provides an impetus for investment into this important research
area, as the potential benefits to engineering practice and to soci-
ety via increased innovation is high
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